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ABSTRACT 

A general purpose software package was developed to 

perform nonlinear constrained optimization of user-defined 

engineering design problems of significant complexity using 

desktop computers. The package, designated Microcomputer- 

based Design Optimization Tool (MDOT), will accept nonlinear 

functions of up to ten variables, which may be bounded, with 

as many as fifty constraints. It was implemented on a 

Hewlett-Packard Model 85 microcomputer with 32 Kbytes of 

random access memory. 

MDOT employs the method of feasible directions for con- 

strained optimization, and a variable metric method for 

unconstrained functions. It is interactive, provides for 

monitoring the optimization progress, and can be interrupted 

to restart from a new point in the design sprice. Typical 

applications of MDOT are in the design of machine com- 

ponents,  composite  laminates,   and  piping  systems. 
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NOMENCLATURE 

3 v, 

;::-( 

The nomenclature defined here is that used in the text. 

Definitions of parameters associated with the program code 

accompany the code listings in Appendix B. Boldface charac- 

ters denote vectors or matrices. 

a   One-dimensional search step length 

D   Inverse Hessian approximation update matrix 

F   Objective function 

G   Vector of inequality constraints 

H   Hessian matrix, or an approximation to its inverse 

1   Vector of design variable lower bounds 

m   Number of inequality constraints 

n   Number of design variables 

p   Vector used in constructing D 

q   Iteration number 

S   Search direction vector 

s   Sealer used in constructing D 

t   Sealer used in constructing D 

u   Vector of design variable upper bounds 

w   Sealer used in constructing D 

X   Vector of design variables 

y   Vector used in constructing D 

VF  objective function gradient vector 

^s **. 
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I.  INTRODUCTION 

A.  OBJECTIVE 

This thesis presents, and describes the development of, 

a computer software package: "Microcomputer-based Design 

Optimization Tool" (MDOT). The motivation for this work 

stemmed from the lack of available general purpose programs 

capable of performing nonlinear constrained optimization of 

engineering design problems of significant complexity using 

desktop computers. 

In a more general sense, MDOT is intended to help focus 

attention on the versatility and computational power of 

microcomputers. These machines are a potentially very 

valuable resource which is just beginning to be tapped by 

the engineering design community. 

The remainder of Chapter I is devoted to an overview of 

where microcomputers stand in engineering design , where 

MDOT stands amid the optimization software currently avail- 

able, and the implementation of MDOT. In Chapter II, a 

general description of optimization concepts and methods, 

and their application to engineering design, is presented. 

In Chapter III, the program development of MDOT is de- 

scribed, and flowcharts of the algorithms coded are pro- 

vided. In Chapter IV, the test problems which were used to 

validate MDOT are described,  along with the solutions 

• ^ > „> _ v _--...%.  -_  «-  •   ILtL*L   « - -   _ - M 
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obtained. Chapter V is a brief summary. Appendix A is the 

MDOT user manual. Appendix B contains an annotated listing 

of the  MDOT program  code. 

B.     OVERVIEW 

There are desktop computers available today with memory 

size and computational speed in excess of those of tne 

mainframes of just a few years ago. The fact that their 

capabilities are not yet being fully exploited in the day- 

to-day process of engineering design can be attributed in 

part to the lack of available software. As Falk [Ref. 1: 

p.50] observes, "...engineers...have little time or pa- 

tience to do computer programming." Even among those engin- 

eers who have the time and patience, there persists a reluc- 

tance to program on microcomputers because of a perceived 

lack of general purpose utility or under-estimation of the 

capability of these  machines. 

Design optimization is a concept which, similar to the 

desktop computer, has received "mixed reviews" from the 

engineering disciplines. While there are few who would ques- 

tion the virtue of seeking the "best" solution to a problem, 

there are many who are reluctant to relinquish to a computer 

what they see as the engineers' proprietary decisions in the 

design process . Our whirlwind courtship of computer aided 

design (CAD) is being tempered somewhat by a counter trend 

back  toward  "human   aided  design". 

10 
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It was within the framework of these two ideas that the 

development of MDOT was undertaken; not only to make avail- 

able a useful interactive design optimization program, but 

to demonstrate that a powerful general purpose problem sol- 

ver can be implemented in a microcomputer. Little knowledge 

of programming is required of the MDOT user. Problem entry 

and program execution are convenient. The interactive fea- 

tures of the code permit the design engineer to keep in 

close touch with the progress of the problem solution and to 

interrupt program execution to make parameter adjustments 

based on engineering judgement. 

The chief advantage that microcomputers enjoy over main- 

frames is their low cost. Small computers are typically 

purchased outright, so that their use incurs no additional 

expense for connection or run time. Their major disadvantage 

is comparatively slow computational speed, but it is doubt- 

ful that engineering design ever progresses so rapidly as to 

make it imperative that a solution be obtained in seconds 

rather than minutes. In any case, this disparity is rapidly 

disappearing with the development of 16 and 32-bit micro- 

processor-based desktop computers [Ref. 2: p.2]. 

C.  OPTIMIZATION SOFTWARE CURRENTLY AVAILABLE 

There are several powerful general purpose optimization 

programs available, such as COPES/CONMIN [Ref. 3], which can 

deal with a wide range of design problems. These programs 

11 
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must reside in a mainframe computer, and their use can be 

cumbersome, especially for the occasional user. At the other 

extreme are those codes developed for use in computers with 

limited memory. Typically these are special purpose programs 

employing zero order or simple first order methods, such as 

random search or steepest descent, capable of handling only 

relatively small problems. They are convenient, but of lim- 

ited usefulness. 

The gap between these two categories requires that opti- 

mization of the great number of general design and analysis 

problems which are on a scale that could easily be handled 

by small computers be done on a mainframe or not at all. 

This often leads to overmodeling, wherein a relatively 

simple problem is unnecessarily made more complicated in 

order to more fully utilize the machine capability or to 

justify the expense of computer services. MDOT was developed 

specifically to bridge this gap. 

MDOT provides the design engineer with a convenient tool 

for optimization of nonlinear problems in up to ten bounded 

independent variables subject to as many as fifty inequality 

constraints. All that is required is access to a desktop 

computer, and today there are certainly few engineers who 

lack this. 

12 
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D.  IMPLEMENTATION OF MDOT 

The program development for MDOT was done on a Hewlett- 

Packard model 85A microcomputer, which is built around an 8- 

bit microprocessor. This particular machine is so often used 

as a data aquisition system controller that its stand-alone 

computational capability may frequently be overlooked. A 

versatile, engineering oriented computer with high machine 

precision, it is nonetheless on the low end of the memory 

size scale with just 16 Kbytes. The computer's capabilities 

were enhanced by the addition of a 16 Kbyte memory extension 

module and three read-only-memory modules: the matrix, ad- 

vanced programming, and printer/plotter ROMs. As configured, 

there were just over 30 Kbytes of memory available for 

programming. 

MDOT was written in HPBASIC, which differs in some re- 

spects from standard BASIC. As such, in its present form 

MDOT is limited to use in the HP series 80 computers. With- 

out much difficulty, though, the code could be translated 

and run on almost any available hardware. Additional com- 

ments concerning transferrability of the code are presented 

in chapter III. 

.">" 
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II.  OPTIMIZATION 

A.  APPLICATION TO ENGINEERING DESIGN 

Design has been described as the creative process 

through which the engineering profession develops devices, 

processes and systems to fill the needs of man [Ref. 4: 

p.170]. A "need" must first be defined in terms of specific 

requirements which the design must meet. Then the engineer, 

drawing on available resources, synthesizes proposed solu- 

tions to meet these requirements. Many such designs may, and 

usually do, exist. Thus there arises the subproblem of 

finding the best of these designs, and the inherently iter- 

ative nature of design. 

Traditionally, the solution to this subproblem was 

sought through comparitive analysis of a reasonable number 

of alternative designs; a tedious and expensive procedure 

for problems of even moderate complexity. The recent devel- 

opment of a broad range of very useful CAD software has made 

it possible to remove a good deal of the tedium, and, per- 

haps to a lesser degree, the expense of engineering design. 

For the most part, though, these tools have made no fun- 

damental change in the approach taken to solve the design 

problem. What they have done is redefined the phrase "a 

reasonable number of alternative designs". By programming 

14 



Ob 

5J 

'V 
tv 

•  » • . *  fc  »  . -  * ~ . 

the analysis and comparison tasks into a computer, the 

engineer is able to consider many more possible solutions in 

the same amount of time. 

Optimization methods are a significant extension of the 

CAD concept in that they enable the engineer to exploit the 

capabilities of the computer over the entire scope of the 

design process. In optimization, the computer is tasked not 

only with analysis and comparison of previously selected 

designs, but with selection of the designs to be considered 

in subsequent iterations as well. Since this intermediate 

design selection can be quite complex, closing the design 

loop in the computer can lead to a considerable savings of 

time and effort in the search for the optimum. 

B.  THE NATURE OF THE PROBLEM 

Fundamental to the economical solution of the design 

problem is that it be quantified and formulated mathematic- 

ally to permit conceptual, rather than physical, manipul- 

ation of resources. The design, then, is specified by ass- 

igning values to a set of independent variables which repre- 

sent its physical characteristics. The measure of goodness 

of the design used for comparison with others is expressed 

as some functional relationship between these variables. The 

requirements placed on the design, as well as the physical 

limitations of the design itself, define a region in the 

multi-dimensional mathematical design space. The design must ^*1 
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reside inside this region to be acceptable. In the termin- 

ology of optimization, the measure of goodness is the 

objective function, the requirements and limitations are 

constraints, and designs which fall within the region 

bounded by the constraints are considered feasible. As 

examples, the set of independent design variables might be 

the cross-sectional dimensions of a structural element, the 

objective function its weight, and the constraints its 

maximum allowable stress and size limitations. 

In general, the formulation of a design problem leads to 

an objective and a number of constraints, all of which may 

be linear or nonlinear functions, explicit or implicit in 

many design variables which themselves are subject to limi- 

tations, called bounds or side constraints. Stated mathe- 

matically [Ref. 5: p.9], the design optimization problem is 

to 

Minimize:      F(X) objective   function 

Subject  to:       Gj(X)<0,       j=1,m 

1i£xiiui       i«1»n 

Where:   XT={X1,X2,...Xn> 

UTs{u-,,U2,. . .Un) 

inequality constraints 

side constraints 

design variables 

lower bounds on X 

upper bounds on X 

If in the problem formulation it is more convenient to 

define the objective function as a quantity which is to be 

16 
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maximized, such as efficiency or torque, then the above 

statement may simply be modified to read "Minimize:  -F(X)". 

C.  THE NATURE OF THE SOLUTION 

Optimization is an application of mathematical theory 

concerning identification of the extrema of functions. In 

multivariable calculus, for example, the method of Lagrange 

multipliers is developed, which provides a closed form 

solution for the extremum of a constrained function. While 

useful for demonstrating concepts and developing methods, 

such analytical techniques are not practical for solving any 

but the simplest of problems. Design optimization methods 

involve numerical approximation techniques and iterative 

search schemes. They are ideally suited to, and in fact made 

practical only through, the use of digital computers. 

Many optimization algorithms have been developed around 

widely varying strategies. Common to most are the three 

basic tasks that make up one iteration of the solution loop: 

1. Selection of a direction in the design space along 

which to search. 

2. A search for the most improved design in this 

direction. 

3. Convergence testing to determine when the optimum 

design has been found. 

17 
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For unconstrained problems, these tasks are relatively 

straightforward. Addition of a constraint set may, depending 

on the sophistication of the method employed, complicate the 

first two steps considerably. 

Except in the case of zero order methods, selection of a 

search direction involves calculation of partial deriv- 

atives, for which general purpose optimizers use numerical 

techniques, such as finite forward differences. At any point 

in the design space, the negative of the gradient of the 

objective function indicates the direction in which the 

objective function is most rapidly decreasing. This may not 

be the best direction in which to search, however, if the 

objective function is highly nonlinear or if the design is 

near one or more constraints. Efficient algorithms variously 

employ constraint gradients, Hessian matrix approximations, 

and previous iteration history information in addition to 

objective function gradients to select the search direction. 

Finding the best improved design along a line in the 

specified direction is termed a "one-dimensional search", 

because the objective and constraints are treated as func- 

tions only of the "distance" along this line from the cur- 

rent design point. Techniques employed in the one-dimen- 

sional search include the golden section and Fibonacci 

methods, polynomial approximations, and combinations of 

these [Refs. 5,6]. If constraints are present, the best 

improved design may not be the point on this line at which 

18 
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the objective function is minimized. If a constraint is 

violated, the design is infeasible, so the search algorithm 

must seek the point at which the objective function is 

minimized while remaining inside the feasible region. 

Part of the optimization problem formulation is specifi- 

cation of an initial design point from which to start the 

solution process. For constrained problems, the possibility 

exists that this initial design will be infeasible. To 

provide for this, the search direction routine must find the 

direction which will yield the shortest path to the feasible 

region, and the one-dimensional search algorithm must allow 

for the possible necessity of increasing the objective func- 

tion in order to attain feasibility. 

Convergence to a global optimum generally cannot be 

guaranteed. Theory provides the Kuhn-Tucker conditions 

necessary for the existence of an optimum, but these are 

neither convenient to evaluate nor sufficient to define 

optimality [Ref. 5: pp. 17-20]. In practice, convergence is 

typically considered to be indicated by one or more of the 

following: 

1. Failure to find a search direction which will lead to 

an improved design. 

2. Given a direction, failure to find any significant 

search step length to improve the design. 

3. Finding no appreciable design improvement over a 

specified number of iterations. 

19 
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If the possibility of local minima exists, the optimi- 

zation should be repeated from several different initial 

designs. For constrained problems, the optimization process 

may fail to find any feasible solution, in which case the 

problem must be reformulated. 

An iteration in the optimization solution, then, may be 

summarized. Beginning from the current design point X^, a 

search direction, SQ, is determined. Then the one-dimen- 

sional search is conducted to find the "distance", a, along 

S^, which yields the best improved design. The design is 

then updated as 

X^+1 = **  + aS<l 

at which point the objective function is reevaluated and the 

design checked for convergence. 

Optimization algorithmic efficiency and convergence 

behavior are affected by the mathematical characteristics of 

the problem. As numerical methods, they are susceptible to 

ill-conditioning. Truncation and round-off errors, which are 

an unavoidable consequence of the use of digital computers, 

aggravate this. Given an optimizer suitable to the problem 

type, careful problem formulation, as discussed in Appendix 

A, is the best insurance against poor optimizer performance. 
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III.  PROGRAM DEVELOPMENT 

A.  BASIC CRITERIA 

At the outset of the program development, four basic 

criteria were established to be met by MDOT: utility, mini- 

mization of required memory, user convenience, and reduction 

of problem run time. At points where conflict existed 

between them, these criteria were prioritized in the order 

listed. Few such compromises were necessary, as the require- 

ments were found to be generally complimentary. 

The utility criterion meant that MDOT should be a 

general purpose optimizer which could be applied to a wide 

range of design problems. Minimization of memory was 

dictated by the limitaions of microcomputers, and affected 

not only algorithm selection and problem size, but many 

aspects of the actual coding as well. User convenience 

considerations drove the development of those portions of 

the code which are interactive, and those involved with 

problem entry and output options. Reduction of problem run 

time was a factor throughout the development, most notably 

in the incorporation of optimization progress display and 

the interrupt/restart option. 
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B.  MDOT ALGORITHMS 

1.  Algorithm Selection 

Of the many optimization algorithms available, the 

zero order methods, as well as the simpler of the first 

order methods, were ruled out on the basis of their lack of 

general purpose utility. Others, including linear and quad- 

ratic programming types, were eliminated because of their 

excessive memory requirements [Refs. 7,8]. Finally. lh* need 

to reduce problem run time while retaining utility lesd to 

the selection of two algorithms, each capable of nonMnear 

multidimensional optimization. The first is a variable 

metric method which is used in MDOT for unconstrained opti- 

mization, the second is a method of feasible directions, for 

minimizing constrained functions. 

The selection of the one-dimensional search strategy 

to be employed was driven by the need to reduce problem run 

time. There is a trade-off to be made between the precision 

to which the search step length determination is made and 

the time required for each optimization iteration. Both the 

golden section and Fibonacci search methods can attain very 

precise solutions, but to do so they become computationally 

expensive. In MDOT the one-dimensional search routines were 

designed to seek a less precise step length solution in 

order to complete each iteration more quickly. The method 

employed in both the optimizers estimates an initial step 

length based on a reasonable change in objective function 
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magnitude. The golden section ratio is then used to estab- 

lish bounds on the solution, which is finally refined by 

polynomial approximation. 

2.  The Unconstrained Optimizer 

From the derivation of the Kuhn-Tucker conaitions, 

it is known that if at some point X the objective function 

F(X ) has a local minimum, then the gradient of the object- 

ive at this point, ^F(X ), must vanish and the Hessian 

matrix H must be positive definite. Combined with a second 

order Taylor series expansion of F(X) about some point, say 

X°, near the minimum, these conditions lead to an expression 

for the direction from X° to X as 

X* - X° = -H(X°)-WF(X°) 

In practice, determination of the Hessian matrix by finite 

difference approximation, as well as inversion of the 

matrix, would be computationally so expensive as to outweigh 

the  theoretical  gain  in algorithmic efficiency. 

In variable metric methods, information gathered as 

the optimization progresses is used to develop an approxi- 

mation to the inverse of the Hessian matrix, which is then 

used in determining the search direction. As such, these 

first order methods have some convergence characteristics 

comparable to those of second order methods. The algorithm 

for  the  variable  metric  method  is  shown   in  Fig.   1. 
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START 

Specify Xo 

q-0 

X* Xo 

H-  I 

•*- q «• q+l 

F* F(X) 

i 
1 

?F* VF(X) 

• - 

S* -H7F 

• 

1-0 Search 

Exit 

Fig.     1      Algorithm   for   the   Variabla   Metric   Method 
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The   inverse   Hessian   approximation   is   initialized   as 

an   n   x   n   identity   matrix.    To   begin   each   iteration,    the 

search direction   is  defined  as 

S3  =  -HVF(X^) 

After  the  one-dimensional   search   and   design   update,   H  is 

modified as 
H9+1   =   H^  +  D^ 

where  the   form  of  the  update  matrix  D  determines   which   one 

of  a   family  of  variable  metric   methods   is  being  used.   In 

general,   D is defined  as 

Dq s s+wt   ppT + w-1   H^H^y)1 -  "[H^ypT+pd^y)1] 
s2                    t                               s 

where:                      p -  X**  - X^"1 

y   =   VF(X^)   -VFCX^"1) 

s   =  p-y 

t  =  yTH<ly 

Two forms of D, and thus two variable metric 

methods, are available in MDOT. The first is the Davidon- 

Fletcher-Powell method, where w is set equal to zero. The 

second is the Broydon-Fletcher-Goldfarb-Shanno method, with 

w equal to one [Ref. 5: pp. 92,93]. As the convergence 

behavior of a given algorithm can be somewhat problem depen- 

dent, this feature allows the MDOT user to compare the 

results  of two  variations of unconstrained  optimization. 
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The one-dimensional search routine employed by MDOT 

in the variable metric optimizer first finds bounds on the 

unconstrained minimum of the objective function, then 

refines the minimum by a three-point cubic polynomial 

approximation. 

3.  The Constrained Optimizer 

The addition of a set of constraints to the optimiz- 

ation problem requires that more sophisticated techniques be 

applied to its solution, particularly in the determination 

of a search direction and the subsequent one-dimensional 

search. As is the case for unconstrained optimizers, it is 

generally the method used to find a search direction which 

distinguishes the different constrained optimization algo- 

rithms. In the method of feasible directions, a search 

direction in which a finite step will reduce the objective 

function is termed useable, while one which will avoid 

constraint violation is called feasible. The direction find- 

ing problem is then formulated as a sub-optimization task to 

determine the best of the possible useable-feasible direct- 

ions. MDOT employs the algorithm presented by Vanderplaats 

[Ref. 5: pp. 163-170] for the solution of this sub-problem. 

As shown in the flowchart of Fig. 2, the feasible 

directions optimizer begins as a simple steepest descent 

algorithm, provided the initial design is feasible. Opti- 

mization thus proceeds quickly to a point where one or more 

constraints are encountered. 
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START 

Specify Xo 

q"*- 0 

X- Xo 

q~ q+l 

F«*- F(X) 

Gj — Gj<X)     J-i.« 

Find sot J of Gj>0 

VF-*- VF<X) 

VGj-VGj(X)     j=t.J 

NO 
<^ 

YES 

1 
1 

1 

S-» -7F Find S 

1-D Soarch 

1 
1 

X-»- X+aS 

Fig. 2  Algorithm for the Method of Feasible Directions 
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On subsequent iterations the sub-optimization rou- 

tine is used to determine search directions so as to satisfy 

the fundamental requirement that the optimum design be 

feasible. The constrained optimizer in MDOT will accept 

initially infeasible designs. In this case, the direction 

and search routines are modified so as to attain feasibility 

as quickly as possible. Thus a feasible direction and step 

length are sought which will overcome the constraint vio- 

lations, even at the expense of increasing the objective 

function. Once inside the feasible region, optimization 

proceeds as before. 

As in the unconstrained case, in the one-dimensional 

search routine employed in MDOT for constrained optimiz- 

ation, bounds on the solution are first established, fol- 

lowed by refinement by polynomial approximation. Here, how- 

ever, the search must be conducted for the zeros of the 

constraint functions as well as for the minimum of the 

objective. The step length selected is then the one which 

yields the best feasible design. Provision must also be made 

to ensure the design variables remain within their bounds 

(side constraints). In MDOT, if at any time during the one- 

dimensional search a design variable is found to exceed an 

upper or lower bound, it is set equal to the value of the 

violated bound. 
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4.  Program Logic 

The relationships between the modules of MDOT are 

depicted in Figs. 3 and 4 for unconstrained and constrained 

optimization, respectively. The main program is named 

"Autost" because this signals the HP-85 operating system to 

load and run this program automatically when the computer is 

powered up with the mass storage cartridge inserted in the 

tape drive. All the other modules of MDOT are subprograms 

which are called into memory and executed as needed by 

Autost or another subprogram. Once entered into main memory, 

a subprogram resides there for the duration of the optimiz- 

ation unless a "SCRATCHSUB" instruction is executed. 

Following is a brief description of the function of 

each of MDOT's program segments: 

Autost 

LOGO 

DEFALT 

PROB 

CCONT 

UCONT 

ACON 

GRAD 

DIRECT 

FDSRCH 

VMSRCH 

NEWH 

MDOT main calling program 

Displays introductory (welcome) graphic 

Sets program parameters to default values 

Problem entry, evaluation of F and G 

Control of constrained optimization 

Control of unconstrained optimization 

Identification of active/violated constraints 

Calculation of gradients of F and G 

Direction finding subproblem solver 

Constrained one-dimensional  search 

Unconstrained one-dimensional search 

Update approximation to H~1 
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Fig.  4    MDOT Organization — Constrainad 
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CONV Convergence testing 

PROG Optimization progress information 

TERM Output of results of the optimization 

The PROB subprogram is created by the user by 

editing a skeleton problem entry code which is stored on the 

tape. The edited version is then renamed and stored. Autost 

queries the user for the problem name, which is then common 

to all subprograms. Autost makes the first call to PROB in 

order to select the appropriate optimization control rou- 

tine. Thereafter, PROB is called any time an objective 

function or constraint evaluation is required. Both LOGO and 

DEFALT are called by Autost. LOGO generates a simple 

"welcome" graphics display, and is scratched from memory 

upon execution. DEFALT initializes a number of program para- 

meters  to their default  values,   as  defined  in  Appendix  B. 

PROG is called upon completion of each iteration. 

This subprogram generates the user selected optimization 

progress indicators. Options include data and graphics 

displays and printed output. Based on the progress inform- 

ation provided, the user may elect to continue the optimiz- 

ation, restart MDOT from a different initial design, or stop 

and reformulate the problem. CONV is also called upon 

completion of each iteration, to determine, based on the 

convergence criteria set by DEFALT, whether the optimum 

design  has  been  found. 
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TERM is called to end the optimization and generates 

the output of results. Termination may be invoked by a 

number of conditions in other than meeting convergence 

criteria. If the optimizer exceeds a specified number of 

iterations, if the components of the search direction vector 

are all essentially zero, if no search step length can be 

found to improve the design, or if there are an excessive 

number of violated constraints, MDOT will terminate. In any 

case, TERM will generate an output message to indicate the 

condition upon which the decision to terminate was based, 

and offer the user the option of editing and restarting the 

program. 

C.     ADAPTATION  OF  MDOT  TO  OTHER  SYSTEMS 

Since MDOT is coded in HPBASIC, it is not immediately 

transferrable to hardware other than the Hewlett-Packard 

series 80 desktop computers. Translation of the package, 

either into another version of BASIC or into FORTRAN, is 

certainly a ndo-ablen project which would significantly 

expand  the  applicability of  MDOT. 

This section highlights those features of HPBASIC used 

in MDOT which would have the greatest impact on this pro- 

ject. They are: variable name assignment, SUBPROGRAMS, 

matrix  manipulations,   and  graphics. 

The limitation of HPBASIC which most decreases the read- 

ability of the code is that variable names are restricted to 
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either one letter or a letter followed by a digit. One 

result of this is that arrays of subscripted variables are 

sometimes used where individual characteristic names might 

otherwise be assigned. A feature of the language which helps 

considerably, not only to overcome this limitation, but in 

programming complicated algorithms, is the SUBPROGRAM. 

Similar to a SUBROUTINE in FORTRAN, the SUBPROGRAM is 

called when needed and variables may be passed either by 

name or by value. In HPBASIC this allows for the use of the 

same variable name to denote different parameters in sep- 

arate program segments. MDOT makes extensive use of SUBPRO- 

GRAMS. This feature is not available in all versions of 

BASIC. Without it, the translation of MDOT would be more 

difficult, but still possible through the use of functions 

and subroutines, particularly if multi-character variable 

names are permitted. 

Matrix manipulation i3 convenient in HPBASIC. Operations 

such as matrix multiplications, transpositions, dot pro- 

ducts, and identifying extreme array elements are all 

accomplished through simple "MAT" statements. This feature 

is available in some of the other versions of BASIC, but not 

in FORTRAN. Without it, additional subprogramming would be 

required to perform these operations. 

Graphics capabilities vary widely from one hardware 

manufacturer to another, as do the coding instructions used 

to execute the displays. It is likely that the graphics pro- 
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grammed into MDOT would require major modification to make 

them transferrable. 

Two more details of the HPBASIC code are worthy of note: 

program flags and the £ symbol. Program flags are built-in 

indicators which can be set to 1 or cleared to 0, and are 

used in MDOT for conditional branching decisions. They could 

easily be replaced by integer variables. The § symbol is 

used to condense the code and thus conserve memory. It 

simply separates multiple executable statements on one pro- 

gram line. Without this feature, each statement must have 

its own line number. 

D.  POTENTIAL FOR FUTURE GROWTH 

Besides its obvious potential for expanded problem size 

if implemented in a computer with a larger memory, there are 

many refinements and additions which could be incorporated 

into MDOT, either to enhance its general purpose utility or 

to tailor it to a particular type of problem. Some modifi- 

cations for improved utility might involve coding additional 

algorithms, automatic design variable scaling, and the hand- 

ling of equality constraints. 

MDOT could be customized by modification of the problem 

input subprogram, graphics display, output format, or the 

algor Lthms themselves. Coupling of MDOT to an external CAD 

or analysis code also presents many interesting and poten- 

tially useful possibilities. One such configuration might be 
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to use MDOT as a subprogram called to perform optimization 

on localized aspects of a large scale design problem in 

conjunction with a desktop computer CAD system [Ref. 93« 
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IV.  TEST CASES 

Validation of an optimization program typically consists 

of testing it on a battery of representative problems to 

which the solutions are known [Ref. 10]. Based on the 

results of such tests, a number of yardsticks exist by which 

the optimizer is judged relative to others. These can be 

grouped into three categories: stability, robustness, and 

efficiency [Ref. 8: p.75]. 

An optimizer is stable if, once a feasible design is 

attained, the objective function remains non-increasing 

until the optimum has been found. A robust optimizer is one 

which yields a valid solution given a poor initial approxi- 

mation. Efficiency refers either to the number of function 

and derivative evaluations required in the solution or to 

the problem run time. These two measures of efficiency are 

closely related if comparing different optimizers run on the 

same machine, since function and derivative evaluations are 

typically costly operations. 

To these measures of an optimizer's performance, a 

fourth category should be added; that of utility. Given a 

stable and robust optimizer, there are characteristics in 

addition to its efficiency which should be considered in 

determining its utility. Problem size and type solvable by 
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the program are of fundamental importance, as is memory 

storage required to run it. There are trade-offs involved 

here in program development between the sophistication of 

the algorithms used, speed of convergence, hardware 

capabilities, cost of run time, and user convenience. The 

utility of the optimizer is an indication of how these 

trade-offs were made, and involves much more than just 

efficiency. 

A.  UNCONSTRAINED TEST PROBLEM 

Among the unconstrained test problems run on MDOT was 

the so-called "banana" function: 

F(X) = 10X-,4 - 20X.,2X2 + 10X2
2 + X-,2 - 2X1 + 5 

which has an optimum of F(1,1) = 4.0. This function derives 

its name from the shape of the contours of constant objec- 

tive function (Fig. 5). Although only two-dimensional, the 

banana function is a good test of an unconstrained optimizer 

because the objective function surface becomes a steep, 

narrow, curved "valley" as the optimum is approached. An 

inefficient optimizer will tend to "zig-zag" in such a 

design space, resulting in slow convergence near the solu- 

tion, while a non-robust optimizer will tend to terminate 

prematurely. 
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9ry 
Results   of   the   performance   of   MDOT   on   the   banana 

function are summarized  below. 

Initial  design X^  =  -1.0 

Xp°  =   1.5 

F°  s   10.5 

Optimum: X,    =  0.95979 

X2*  =  0.91442 

F*  =   4.002 

MDOT arrived  at this   solution   in  about  one  minute,   after   12 

iterations  and   66  function  evaluations. 

si 
..1 

B.  CONSTRAINED TEST PROBLEM 

Among the constrained test problems run on MDOT was the 

cantilevered beam problem posed by Vanderplaats [Ref. 3: 

p.8], as illustrated in Fig. 6. The objective function in 

this case is the volume of the beam, for which a theoretical 

optimum of 6603*9 is known. Results of the performance of 

MDOT on this beam design problem are summarized below. 

Initial design: XT
0
 = 3-5 

X2° = 16.0 

F° = 11200 

3: 
40 
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Canti 1 evened Beam 

P-10. 000 lb 

1=200 in RH 

h 

Dosign Variables: 

ObjectivQ Function: 

Constraints: 

Where: 

b, h 

Volume 

Bending Stress < 20,000 psi 
Deflection < 1.0 in 
Ratio of h to b < 10.0 
0.5 < b < 5. 0 
1.0 < h < 20. 0 

Bending Stress = Mc/I 
Deflection = P1V3EI 

Fig. 6  Constrained Test Problem 
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Optimum:                            X-, . 1.8261                                                    ; 

x2* s 18.174 

F* a 6637.5 

G1* a -0.024 

G2* a -0.00656 

G3* s -0.00522 
1 

MDOT arrived at this solution in about two minutes, after 11 

iterations and 56 function evaluations. 

With refinement of the algorithms, improvement could 

likely be realized in the program performance. All variables 

in MDOT are declared "SHORT", which in HPBASIC means they 

are carried to 5 digits." In a machine with just 64 Kbytes of 

memory, this could be changed to "REAL", in which case 9 

digits would be carried, with an attendant improvement in 

the precision of the solution. The number of function eval- 

uations, and thus the problem run time, could be decreased 

by modification of the algorithms such that gradients are 

not calculated in every iteration. Also, the efficiency of 

the one-dimensional search routines could be improved by 

distinguishing between linear and nonlinear constraint 

functions. 
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V.  SUMMARY 

Optimization is a useful tool in engineering design. The 

desktop computer is the vehicle through which this tool can 

be made widely available, convenient, and inexpensive. The 

development of MDOT affirms the feasibility of implementing 

a powerful general purpose optimization algorithm in a com- 

puter with limited memory. 

The applicability of MDOT could be expanded through con- 

version to standard BASIC or translation to FORTRAN. It has 

potential for growth in terms of versatility and problem 

size, and lends itself to tailoring to suit a particular 

class of problem. MDOT could be coupled with a microcomputer 

CAD package to close the design loop in the computer. 

MDOT has been validated by tests on a number of problems, 

both constrained and unconstrained. Its performance is good, 

and could be made better through refinement of the 

algorithms. Specific modifications might involve the one- 

dimensional search routines and the frequency of gradient 

calculations. 

As microcomputers continue to become more commonplace and 

their capabilities continue to improve, emphasis will shift 

away from the mainframes for the solution of problems which 

are on a scale easily handled by smaller machines. Software 

such as MDOT will both accompany and encourage this shift. 
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APPENDIX A 

MDOT USER MANUAL 

1.  INTRODUCTION 

To avoid repetition, references to material presented in 

the preceding chapters are made in this appendix. A useful 

follow-on project would be to assemble a user manual for 

MDOT independent of the background and developmental 

material in the body of the thesis. Details of computer 

operation have not been included here, as it is assumed that 

the user is either familiar with the machine or has access 

to the operating manual. 

MDOT is currently available only on magnetic tape 

cartridge for use in Hewlett-Packard series 80 computers. If 

it is to be implemented in an HP-85A, the machine must be 

configured with four enhancements: a 16 Kbyte memory exten- 

sion module, a matrix ROM, advanced programming ROM, and a 

printer / plotter ROM. No peripheral devices are required, 

nor is extensive programming. 

&>y 

2.  PROBLEM FORMULATION 

Formulation of a well-posed problem, as discussed in 

chapter II, is fundamental to the satisfactory performance 

of an optimization program. First, the design variables must 

be identified. These are the parameters of the problem which 

&>:: >>.• 

44 

.a»..-_».•»«»..». . ,%,(, _v.VV v. V_V> 



the optimizer will be permitted to change in its search for 

the best design. The objective must then be a function of 

these variables, and the minimum of this function is what 

the optimizer will seek. Constraints may be imposed on the 

design in two ways: 

1. Upper and/or lower bounds (side constraints) may be 

specified for any of the design variables. 

2. General inequality constraints may be expressed as 

functions of the design variables. 

Side constraints are explicitly assigned when the initial 

design estimate is entered into the problem subprogram. 

Inequality constraints must be formulated as quantities 

which are to be less than or equal to zero. Care should be 

exercised to avoid redundant or otherwise unnecessary con- 

straints. In MDOT, an unconstrained problem has neither side 

constraints nor inequality constraints. MDOT has no pro- 

vision for equality constrained problems. 

The objective function can be any characteristic of the 

design expressible mathematically in terms of the design 

variables. It is important to keep in mind that it is the 

minimum of this function which is sought. If the problem is 

formulated around an objective which is to be maximized, 

then it must be entered in such a way that MDOT will seek to 

minimize the negative of this objective. 

.*• 
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An important consideration during problem formulation is 

the range of orders of magnitude of the design variables. 

Optimizer performance is best in a design space in which the 

contours of constant objective function are concentric hy- 

perspheres, such that a given change in one variable has the 

same effect on the objective as an equal change in any other 

variable CRef. 11, p.17]. In practice, this is approximated 

by scaling the design variables such that they are all of 

the same order of magnitude, or nearly so. Some optimizers 

do this automatically, MDOT does not. 

Selection of the initial design point from which to 

start MDOT will affect its performance and problem run time. 

Any available information which will improve the initial 

approximation should be used. If a constrained problem is 

being entered, a check should be made to ensure the initial 

design falls within the side constraints. Although MDOT is 

equipped to handle initially infeasible designs, convergence 

will likely be more rapid if the initial design is free of 

violated inequality constraints. In some cases, initial 

feasibility may be a difficult thing to build into the 

problem formulation. MDOT will display the results of the 

first design evaluation and indicate whether or not it is 

feasible. At that time, the user may elect to proceed with 

the optimization or edit the initial design and restart the 

program. 
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3.  PROBLEM ENTRY 

MDOT problem entry is accomplished by editing the PROB 

subprogram. With this module loaded into memory and listed 

on the CRT, modifications are made on the program lines 

noted below. 

Line 10: 

The file name of the subprogram is changed to any 

name up to 6 characters in length, except any of 

those  already  assigned  to  MDOT files. 

Line   100: 

Just after the word DATA, two integers are added, 

separated by a comma. The first is the number of 

design variables, (N1), the second is the number 

of inequality constraints, (N2). For unconstrained 

problems  N2 is  always  zero. 

Lines  201-210: 

Initial values of the design variables are en- 

tered, beginning with X1 on line 201 and contin- 

uing, one variable per line. If the problem is 

constrained, each initial value is followed by the 

lower and upper bounds assigned to the correspond- 

ing variable. If no bound is to be specified, th* 

field is filled by an "N". 
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Lines 231-398: 

These lines are available for defining expressions 

to be used in the design evaluation. These state- 

ments will be executed prior to each objective or 

constraint computation. Whenever the design vari- 

ables are used in this, and the remaining sections 

of the subprogram, they are expressed as X1, 

X2,...X0. 

Lines 400-459: 

These lines are available for defining the object- 

ive function, which must be assigned the variable 

name F. 

Lines 500-9000 

These lines are available for defining the in- 

equality constraint functions, which must be sub- 

scripted variables named G(i), i=1,N2. 

Depending on the complexity of the problem, the user may 

elect to use any BASIC programming structures in this sub- 

program. As examples, FOR-NEXT loops, FUNCTIONS, SUB- 

ROUTINES, and even other SUBPROGRAMS could be used in the 

problem formulation. With about 7.3 Kbytes of memory avail- 

able for constrained problem entry, and twice that for 

unconstrained problems, there is space available for con- 

siderable programming. Variable names used may be any except 

those included in the PROB nomenclature, as defined in 
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Appendix B. If subscripted variables are to be used, a DIM 

(dimension) statement must be inserted near the beginning of 

the subprogram. When problem entry is complete, the subpro- 

gram is stored under the new file name. 

Listings of the subprograms created for the test cases 

of Chapter IV are included at the end of Appendix B, under 

the names "BANANA" and "BEAM". Comparison of these listings 

to that of PROB, which is the unedited version, will help to 

illustrate the problem entry procedure for both constrained 

and unconstrained cases. 

4.  PROGRAM EXECUTION 

MDOT is started either by execution of LOAD "Autost" and 

RUN commands, or by powering up the computer after inserting 

the tape cartridge, as explained in section III.B.4. After 

the "welcome" graphic, the user is queried as to the problem 

file name, progress display options and output format 

desired. Optimization then proceeds. 

The user may choose to monitor the optimization closely, 

or perhaps not at all. For example, if a constrained problem 

is being run for the first time, the user may want to check 

for rapidly changing design variables so that the option of 

editing and restarting might be exercised. On the other 

hand, if a problem known to be well-behaved is being re-run 

with relatively minor changes, the user may elect to 

"ignore" MDOT until the solution is obtained. 
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Any of the values carried by the DEFALT subprogram, as 

defined in the listing in Appendix B, may be changed. They 

may be permanently modified by editing and re-storing 

DEFALT. Alternatively, a default value may be changed during 

program execution, whenever the edit option is invoked, by 

reassigning its value from the keyboard. If the program is 

restarted, though, DEFALT is recalled. 
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APPENDIX B 

ANNOTATED PROGRAM LISTINGS 

In an effort to conserve memory, MDOT was coded without 

remark statements. The program listings are therefore pre- 

sented in an annotated format to aid in following the logic 

flowpaths. Nomenclature common to two or more modules is 

defined first, then the additional nomenclature unique to 

each module immediately precedes the applicable segment of 

the code listing. Numbers in parentheses in the function 

descriptions refer to line numbers in the associated program 

segment. Parentheses following a variable name in the nomen- 

clature lists indicate vectors, while parentheses enclosing 

a comma indicate two-dimensional arrays. 

COMMON NOMENCLATURE 

A1() Addresses in G() of violated and active constraints 

A2() Values of constraints identified in A1() 

C1() Vector of integer default values 

C2() Vector of non-integer default values 

DO Current objective function gradient 

D1() Previous iteration objective function gradient 

F Current value of objective function 

FO Initial value of objective function 
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F1 Previous iteration value of objective function 

G() Vector of current constraint values 

G1(,) Gradients of violated and active constraints 

H(,) Approximation to the inverse of the Hessian 

L() Vector of design variable lower bounds 

N1 Number of design variables 

N2 Number of inequality constraints 

N3 Number of currently violated constraints 

N4 Number of currently active constraints 

P$ Problem subprogram file name character string 

P0-P3 Polynomial approximation coefficients 

Q1 Iteration counter 

Q2 Function evaluation counter 

Q3 Convergence counter 

Q4 Convergence counter 

R1 Golden section ratio 

E 

\ 
R2      Golden section ratio pj 

SO     Search direction vector '.->! 

-• X() Current design 

XOO Initial design 

X1() Previous iteration design •& 

X90 Working vector of perturbed design variables f 
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PROGRAM FLAGS 

Unless otherwise noted, the flags listed are set to a 

value of 1 when the associated condition exists. 

FLAG CONDITION 

1 Maximum number of iterations has been exceeded 

2 Number of violated constraints greater than N1+2 

3 Search vector components are all essentially zero 

4 No appreciable move parameter can be found 

5 Convergence to optimum has occurred 

6 Variable metric algorithm is to be restarted 

7-8 Unassigned 

9 Subprogram is to be exited without execution 

10 Termination has occurred 

11 Progress option select:  1 = data display 
2 = graphic display 
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Module:   Autost 

Calls: autost calls all other modules of MDOT into 

memory, then scratches those not needed for the 

type of problem (constrained or unconstrained) 

being run. For information transfer, Autost 

calls: PROB (edited), UCONT, CCONT, LOGO, and 

DEFALT. 

Function:  MDOT main calling program (10-370). 

Interactive problem initiation (1000-1200). 

Program loading (2000-2070). 

Initial design display generation (3000-3130). 

Design/default editing (4000-4260). 

Nomenclature: 

A$ Interactive query response (string) 

S$&A$ Concatenated string to call appropriate optimizer 

D$ Display string ("FEASIBLE" or "INFEASIBLE") 

B$ Display string ("C1(" or "C2(") 

NO Working variable for editing default values 

N Interactive query response (numeric) 

K0 If a 0, indicates first problem of run 
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10 ! Autost.... 
20 OPTION BASE 1 
30 COM P*C 63 ,1NTECER N1,N2,N3,N4,Q1,02,Q3,Q4,C1(10) ,SHORT 
C2(20) 
40 DIM S*C4D,A*C13,D*C103,B*C3: 
50 SHORT X0(10),F0,G(50),L(10),U(10),N0 
60 INTEGER N,ItK0 
70 S*="CONT" 
•30 GOSUB 2000 
90 CALL "LOGO" @ SCRATCHSUB "LOGO" 
100 CALL "DEFALT" 
110 G1,Q2,Q3,Q4,N3,N4,K0=0 
120 FOR 1=1 TO 11 
130 CFLAG I 
140 NEXT I 
150 WAIT 1000 @ GOSUB 1000 
160 CLEAR 3 CALL P* ( 0 ) 
170 REDIM X0(N1) 
180 IF N2=0 THEN 210 
190 REDIM G(N2),L<N1),U<N1) 
200 GOTO 220 
210 MAT G=ZER(1)S MAT L=G@ MAT U=L 
220 CALL P* ( 1,X0<),F0,G<>,L<),U<) ) 
230 GOSUB 3000 
240 IF N2=0 THEN Ai="U" ELSE AM"C" 
250 CALL Af&S* ( X0(),F0,G(>,L(),U() ) 
260 CFLAG 10 • CFLAG 9 
270 CLEAR S DISP <2 DISP "Select option..," I DISP 1 DISP " 
1)  EDIT/RESTART" 

230 DISP @ DISP "   2)  NEW PROBLEM" S DISP ft DISP "   3)  E 
XIT" 
290 INPUT N 
300 ON N GOTO 320,310,360 
310 SCRATCHSUB P* ® GOTO 100 
320 GOSUB 4000 
330 CALL P* ( 1,X0(),F0,G(),L(),U() ) 
340 GOSUB 3000 
350 GOTO 250 
360 CLEAR 
370 END 
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1IM   IF   K0>0   THEN   15)70 
1010 K0=1 
1020 CLEAR @ DISP 8 DISP "Select problem type fop this    ru 
n of MOOT:" S DISP 
1030 DISP "    1)  Constrained" « DISP @ DISP "    2)  Uncon 
strained" @ INPUT N 
1040 ON N GOTO 1050,1060 
1050 SCRATCHSUB "UCONT" @ SCRATCHSUB "VMSRCH" <2 SCRATCHSUE " 
NEWH" @ GOTO 1070 
1060 SCRATCHSUB "CCONT" @ SCRATCHSUB "FDSRCH" @ SCRATCHSUB " 
ACON" <2 SCRATCHSUB "DIRECT" 
1070 CLEAR @ DISP ® DISP "Have you created •!< stored your  pr- 
oblem?" 
1080 DISP © DISP "       (Y or N; ENTER)" fi INPUT Al 
1090 IF A*="N" THEN 1120 
1100 IF A*="Y" THEN 1160 
1110 GOTO 1000 
1120 CLEAR @ DISP @ DISP "      Please refer to the" t DISP 

1130 DISP "        MDOT USER MANUAL" @ DISP 
1140 DISP "       for instructions..." 
1150 GOTO 370 
1160 DISP @ DISP "Enter problem subprogram       file name. 
.." ® INPUT P* 
1170 CLEAR @ DISP @ DISP "Select progress option..." @ DISP 
® DISP "    1)  GRAPHIC DISPLAY" 
1130 DISP a DISP "    2)  DATA DISPLAY" ff INPUT N@ CFLAG 11 
1190 IF N=2 THEN SFLAG 11 
1200 RETURN 
2000 SFLAG 9 @ DISP "Loading MDOT..." 
2010 CALL "DEFALT" @ CALL "CCONT" @ CALL "UCONT" ® CALL "ACO 
N" 
2020 DISP a DISP "Still loadinq MDOT..." 
2030 CALL "GRAD" • CALL "DIRECT" @ CALL "FDSRCH" • CALL "VMS 
RCH" 
2040 DISP S DISP "Almost finished..." 
2050 CALL "NEWH" « CALL "CONV" @ CALL "PROG" t CALL "TERM" 
2060 CFLAG 9 S CLEAR 
2070 RETURN 
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3000 CLEAR S DISP USING 301<s» ; Pt 
3010 IMAGE 3/,13X,6A 
3020 DISP USING 3030 ; N1,N2 
3030 IMAGE 1/,4X,2D," Design Variables",/,4X,2D,M Inequality 
Constraints" 
3040 DISP USING 3050 ; F0 
3050 IMAGE 2/,IX,"Initial Design:  F = ",K 
3060 IF N2=0 THEN 3090 
3070 IF AMAX<GKC2<3) THEN D*="FEASIBLE" ELSE Df = " INFEASIBLE 

I 
3030 DISP USING "11X,10A" ; D* 
3090 ON KEY# 1,"EDIT" GOSUB 4000 
3100 ON KEY* 4,"CONTINUE" GOTO 3130 
3110 KEY LABEL 
3120 GOTO 3120 
3130 RETURN 
4000 CLEAR @ DISP S DISP "Select editing option..." @ DISP S 
DISP "    1)  DESIGN VARIABLES" 

4010 DISP @ DISP "    2)  DEFAULT VALUES" @ INPUT N 
4020 ON N GOTO 4030,4140 
4030 CLEAR @ DISP "Enter the address in X of the   variable 
to be changed" @ INPUT I 
4040 DISP USING 4050 ; I,X0<I) 
4050 IMAGE 2/,IX,"current value: ","X<",K,"> • ",K 
4060 DISP 0 DISP "Enter the new value..." S INPUT X0(I) 
4070 CLEAR «2 DISP &   DISP "Editing complete ?" <2 DISP " 
(Y or N; ENTER)" @ INPUT A* 

40S0 IF A-* = "N" THEN 4000 f 
4090 IF A*="Y" THEN 4110 
4100 GOTO 4070 
4110 Q1,Q2=0 
4120 CALL P* ( 2,X0(),F0,G<),L(),U() ) 
4130 GOTO 230 
4140 CLEAR @ DISP S DISP "Select default array..." ® DISP S 
DISP "    1)  CIO integers" 
4150 DISP S DISP "    2)  C2() reals" @ INPUT N 
4160 CLEAR @ DISP "Enter the address in C of the   variable 
to be changed" ® INPUT I 
4170 IF N=l THEN N0=C1(I) ELSE N0=C2(I) 
41S0 IF N=l THEN BM"C1(" ELSE B*="C2(" 
4190 DISP USING 4200 ; B*,I,N0 
4200 IMAGE 2/,IX,"current value: ",3A,K,"> = ",K 
4210 DISP a DISP "Enter the new value..." @ INPUT N0 
4220 IF N=l THEN CKI)=N0 ELSE C2<I)=N0 
4230 CLEAR @ DISP S DISP "Editinq complete ?" @ DISD "     ( 
Y or N; ENTER)" « INPUT A* 
4240 IF A*="N" THEN 4000 
4250 IF A*="Y" THEN 4260 
4260 RETURN 
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2fS Module: LOGO 

i 
y>< Called by:  Autost 
.ST.," 

Function:  Generate MDOT "welcome" graphic display on CRT. 

~ Scratched from memory upon execution. 
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1 SUB "LOGO" 
10 PEN 1 a GCLEAR 
20 SCALE 0,10,0,10 
30 PEN -1 S GCLEAR 7 
40 PEN 1 @ GCLEAR 3 
50 CSIZE 30 a LORG 5 a PEN -1 
60 MOVE 5,5 S LABEL "rn" 
70 CSIZE 6 a MOVE 5,6.5 S LABEL "o" 
30 WAIT 1000 ® PEN 1 @ GCLEAR 
90 CSIZE 12 @ LORG 2 
100 MOVE 1,8 1 LABEL "m" 
110 MOVE 1,6 1 LABEL "d" 
120 MOVE 1,4 t LABEL "o" 
130 MOVE 1,2 3 LABEL "t" 
140 CSIZE 3 
150 MOVE 2,3 @ LABEL "icrocomputer— based" 
160 MOVE 2,6 a LABEL "esiqn" 
170 MOVE 2,4 a LABEL "ptimization" 
130 MOVE 2,2 a LABEL "ool" 
190 SUBEND 
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Module:    DEFALT 

Called by: Autost 

Function: Set MDOT working parameters to their default val- 

ues. DEFALT is called each time a new problem is 

executed. 

Nomenclature: 

C1(1)   Maximum number of iterations 

C1(2)   Consecutive iterations for convergence criteria 

C1(3)   Variable metric method select: 0 = DFP, 1 = BFGS 

C1(4)-C2(10)  Unassigned 

C2(1)   Finite difference perturbation factor 

C2(2)   Minimum absolute finite difference step 

C2(3)   Violated constraint criterion (tolerance) 

C2(4)   Active constraint criterion (thickness) 

C2(5)    Push-off factor multiplier (theta zero) 

C2(6)   Maximum value of push-off factor 

C2(7)   Factor used in DIRECT when infeasible 

C2(8)   Factor used in step length estimate based on F 

C2(9)   Factor used in step length estimate based on X 

C2(10)  F convergence criterion (relative) 

C2(11)  F convergence criterion (absolute) 

C2(12)   Defined zero 

C2(13)   Epsilon, used to prevent division by zero 

C2(1U)-C2(20)  Unassigned 
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10 SUE "DEFALT" 
20 OPTION BASE 1 
30 COM P*C63 »INTEGER Nl,N2,N3,N4,Q1,02,03,Q4,Cl<10) 
C2(20) 

SHORT 

40 
42 
44 
46 
43 
50 

MAT C1=2ER(10) 
MAT C2=ZER(20) 
Cl(l)=20 ! max # 
Cl(2)=2 ! consec 
C1<3)=1 ! w in H 
C2<1)=.01 ! fin. 

iterations 
conv. 

update 
diff. mult. 

02(2)=.001 ! min. fin. step 
C2(3)=.004 ! const, viol. 
02(4)=-.1 ! active const. 
C2(5)=l ! push-off mult. 
02(6)=50   !   max.    push-off 
02(7)=100000   !   Phi    (DIRECT) 
02(3)=. 1    !   ob.j.   mult. 
02(9)=.1   !   des.   var.   mult. 
02(10)=.001    !   min   rel   F 
02(11)=.001   !   min   abs  F 

54 
56 
53 
60 
62 
64 
66 
63 
70 
72  02(12)=.001 
74  02(13)=.0001 
100  SUBEND 
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Module:    PROB 

Called by: User 

Function: Provide the user with a skeleton subprogram into 

which the optimization problem is entered by 

editing. 

Module:    PROB (edited) 

Called by: Autost, GRAD, FDSRCH, VMSRCH 

Function:  Input the number of design variables and the 

number of inequality constraints (90-100). 

Input the intial design and side constraints 

(130-210). 

Evaluate the objective function and inequality 

constraints (230-9000). 

Nomenclature: 

K1      Flag to indicate first call or subsequent call 

L$      String used in lower bound input 

U$      String used in upper bound input 

X1-X0   Design variable names used in problem input 
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<Ki,X<),F,G<>,L() U < ) ) 10   SUB   "PROB" 
20 OPTION BASE 1 
30 COM P*C63 ,INTEGER 
C2(20) 
35  SHORT   X1,X2,X3,X4,X5,X&,X7,X3,X9,X< 

Nl, N2, N3,N4,Ql,02,03,04,Cl<10 5H0R" 

40 DIM L*C63,U*C6] 
50 IF K1>1 THEN 21 0 
90 READ N1,N2 
100 DATA 
105 IF K1=0 THEN SUBEXIT 
130 FOR 1=1 TO Nl 
140 READ X(I ) 
142 IF N2=0 THEN 1 70 
144 READ Ll,Ut 
150 IF L*="N" THEN 1 L( I) =-l.E99 ELSE L(I>=VAL(LS> 
160 IF U*="N" THEN 1 U(I) =1.E99 ELSE U(I)=VAL(Uf) 
170 NEXT I 
201 DATA 
202 DATA 
203 DATA 
204 DATA 
205 DATA 
206 DATA 
207 DATA 
20S DATA 
209 DATA 
210 DATA 
220 GQSUB 9010 
230 ! User-definec 1 expressions 
399 ! Objective function 
499 Q2=Q2+1 
500 ! CONSTRAINTS 
9000 SUBEND 
9010 X1=X(1) a IF Nl = l THEN RETURN 
9020 X2=X(2) ® IF Nl-2 THEN RETURN 
9030 X3=X(3) @ IF Nl=3 THEN RETURN 
9040 X4=X<4) @ IF Nl=4 THEN RETURN 
9050 X5=X<5> 3 IF Nl=5 THEN RETURN 
9060 X6=X(6) @ IF Nl=6 THEN RETURN 
9070 X7=X(7) a IF Nl=7 THEN RETURN 
9030 X3=X<S) a IF Nl=3 THEN RETURN 
9090 X9=X(9) a IF Nl=9 THEN RETURN 
9100 X0=X(10) a RETURN 
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Module:    CCONT 

Called by: Autost 

Calls:     TERM, PROG, ACON, GRAD, DIRECT, FDSRCH, COMV 

Function:  Control constrained optimization by the method of 

feasible directions (Fig. 2). 
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10 SUB "COUNT" <X0< ),F0,G< > , L ( ),U( ) )                                   ; 
20 OPTION BASE 1 
30 COM P*C63 ,INTEGER Nl,N2,N3,N4,Ql,92,03,04,Cl(10> .SHORT 
02(20) 
40 SHORT XK10),X(10),D< 10),G1< 12, 10),A2< 12),S< 10) 
50 SHORT F,B0,A0,F1 
60 INTEGER Al(12) 
70 IF FLAG<9> THEN SUBEXIT 
30 REDIM XKN1),D<N1),GKN1+2,N1),S<N1) 

• 90 A0,F1,B0=0 @ F=F0 
100 MAT S=ZER(N1)@ MAT X=X0 
110 MAT Al=ZER(Nl+2)@ MAT A2=A1 
120 Q1=Q1+1 
130 IF QKCK1) THEN 160 
140 SFLAG 1 @ CALL "TERM" < X(),F,G() ) @ SUBEXIT 
150 SUBEXIT 
160 CALL "PROG" ( X0(),X(),F/F0,F ) 8 IF FLAG(9) THEN SUBEXI 
T                                                   ; 
170 CALL "ACON" ( G(),Al(),A2() ) @ IF FLAG(9) THEN SUBEXIT 
130 IF FLAG(2) THEN CALL "TERM" ( X(),F,G() ) 
190 IF FLAG<10) THEN SUBEXIT 
200 IF N3+N4#0 THEN REDIM G1(N3+N4,N1) 
210 CALL "GRAD" < X<),F,D<),G(),Al(),A2(),Gl(,) ) ® IF FLAG( 
9) THEN SUBEXIT 
220 IF N3+N4#0 THEN 240 
230 MAT S—D« GOTO 360 
240 CALL "DIRECT" ( D(),Gl(,),Al<),A2(),S(),B0 ) ® IF FLAG(9 
) THEN SUBEXIT 
250 CFLAG 3 
260 IF MAXAB(S)>C2<12) AND ABS<B0)>C2<12) THEN 360 
270 SFLAG 3 
2S0 IF N3#0 THEN CALL "TERM" < X(),F,G<) )                              1 
290 IF FLAG(10) THEN SUBEXIT 
300 IF MAXAB(A2K=C2<12) THEN CALL "TERM" ( X(),F,G<> ) 
310 IF FLAG«10) THEN SUBEXIT 
320 IF C2(4)>=-C2(12) THEN CALL "TERM" ( X(),F,G<) ) 
330 IF FLAG(10) OR FLAG(9) THEN SUBEXIT 
340 C2(4)=C2(4)/3 
350 GOTO 170 
360 MAT S=(1/MAXAB(S)) *S(* CFLAG 4 
370 MAT X1=XS F1=F 
330 CALL "FDSRCH" < X(),L(),U(),F,D(),G(),Al(),A2(),Gl(,),S( 
),A0 ) 
390 IF FLAG(9) THEN SUBEXIT 
400 IF FLAG(4) THEN 280 
410 CFLAG 5 
420 MAT X=(1)*X1+(A0)*S 
430 CALL PI ( 2,X<),F,G() ) 
440 CALL "CONV" ( X<),X1(),F,Fl ) 1 IF FLAG(9) THEN SUBEXIT 
450 IF FLAG(5) THEN CALL "TERM" ( X(),F,G() )                           \ 
460 IF FLAG(10) OR FLAG(9) THEN SUBEXIT ELSE GOTO 120 
470 SUBEND 
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Module: UCONT 

Called  by:   Autost 

Calls: GRAD,   PROG,   TERM,   VMSRCH,   CONV,   NEWH 

Function:     Control    unconstrained    optimization    by    the 

variable   metric   method   (Fig.    1). 

Nomenclature: 

K       Indicates an iteration in which no move parameter 

to improve the design was found 

A       One-dimensional search move parameter 
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10  SUE   "UCONT"    (X0(),F<9,G(),L(),U()) 
20 OPTION BASE 1 
30 COM P-*C63 ,1NTEGER N1,N2,N3, N4, Q1( Q2, Q3, Q4, C1 ( 10 ) , SHORT 
C2 (2<i)) 
40 SHORT X(10), XK10) ,D(10),D1(10),S( 10),H(10, 10) 
50 SHORT F,F1,A 
60 INTEGER K 
70 IF FLAG<9> THEN SUBEXIT 
S0 REDIM X(N1),X1(N1),D<N1),D1<N1) 
90 MAT X=X0@ F=F0 @ K=0 
100 CALL "GRAD" < X(>,F,D<),G<) ) 
110 MAT H=IDN(N1,N1) 
120 Q1=Q1+1 
130 CALL "PROG" ( X0(),X(),F/F0,F ) 8 IF FLAG(9) THEN SUBEXI 
T 
140 IF GKCl(l) THEN 170 
150 SFLAG 1 @ CALL "TERM" ( XO,F,GO ) 
160 IF FLAG(10) OR FLAG(9) THEN SUBEXIT 
170 MAT S=H*D 
130 MAT S=-S 
190 MAT S=<1/MAXAB(S)>*S 
200 MAT X1=X@ MAT D1=D@ F1=F 
210 CALL "VMSRCH" ( X(),F,D<),S(),A ) 9 IF FLAG(9) THEN SUBE 
XIT 
220 IF A>C2<12) THEN 270 
230 K=K+1 
240 IF K<2 THEN 110 
250 SFLAG 4 S CALL "TERM" ( X(),F,G<) ) 
260 IF FLAGU0) OR FLAG(9) THEN SUBEXIT 
270 MAT X=(1)*X+<A)*S 
230 CALL "CONV" ( X C ) , X1 ( ) , F, Fl ) £ IF FLAG<9) THEN SUBEXIT 
290 IF FLAG(5) THEN CALL "TERM" ( X(),F,G() ) 
300 IF FLAG(10) OR FLAG(9) THEN SUBEXIT 
310 IF FLAG(6) THEN 110 
320 CALL "GRAD" < X ( ), F,D(),G< ) ) C IF FLAG(9) THEN SUBEXIT 
330 CALL "NEWH" ( X ( ) , X 1 ( ) , D( ) , Dl ( ) , H ( , ) ) <* IF FLAG (9) THEN 
SUBEXIT 

340 GOTO 120 
350 SUBEND 
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Module: ACON 

•".v 
Called by: CCONT 

'\4 

Function:  Determine the number of currently violated (N3), 

and active (N4), inequality constraints. 

Construct the A1() vector of the addresses in G() 

of the active/violated constraint set. 

Construct the A2() vector of the current values 

of this set. 

Violated constraint information is stored in the 

first N3 rows of A1() and A2(), active constraint 

information in the last N4 rows. 

ft 
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10 SUB "ACON" CG<>,A1<),A2()) 
20 OPTION BASE 1 
30 COM P"*C6] ,1NTEGER N1,N2,N3,N4,Q1,02,Q3,04,C1(10) ,SHORT 
C2 < 20) 
40 ON KEY» 1 GOTO 300 
50 IF FLAG<9) THEN SUEEXIT 
60 CFLAG 2 3 N3,N4=0 
70 FOR 1=1 TO N2 
80 IF G(I>>=C2<3) THEN 110 
90 IF G<I)>=C2<4> THEN N4=N4+1 
100 GOTO 120 
110 N3=N3+1 
120 NEXT I 
130 IF N3<=Nl+2 THEN 150 
140 SFLAG 2 g SUBEXIT 
150 IF N3+N4=0 THEN SUBEXIT 
160 MAT A1=ZER(N3+N4)@ MAT A2=A1 
170 J3,Ü4»1 
130 FOR 1=1 TO N2 
190 IF G(I)>=C2<3) THEN 250 
200 IF G(I)<C2(4) THEN 280 
210 A1(N3+.J4) = I 
220 A2 < N3+J4)=G <1) 
230 .J4=.J4+1 
240 GOTO 280 
250 AK.J3) = I 
260 A2 (.J3) =G < I ) 
270 J3=J3+1 
230 NEXT I 
290 GOTO 310 
300 SFLAG 9 @ SUBEXIT 
310 SUBEND 
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Module: GRAD 

Called by: CCONT, UCONT 

Calls: PROB (edited) 

Function: Calculate the gradient of the objective function 

by first forward finite difference approximation. 

In constrained optimization, calculate gradients 

of the active/violated inequality constraint set. 

Nomenclature: 

F2      Intermediate function evaluation 

N       Design variable perturbation 

44 i -* ''•• I 
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10 SUE "GRAD" <X(),F,D(),G<),A1<),A2(>,G1(,>) 
2") OPTION BASE 1 
30 COM P*C 6] ,1NTEGER N1,N2,N3,N4,Q1,Q2,Q3,Q4,C1<10) ,SHOR 
C2(20) 
40 SHORT F2,X9(10),N 
50 ON KEY« 1 GOTO 210 
60 IF FLAG(9) THEN SUEEXIT 
70 FOR 1=1 TO Nl 
S0 MAT X9=X 
90 N=C2(1)*ABS(X9(I)) 
100 IF N<C2(2> THEN N=C2(2) 
110 X9(I)=X9(I)+N 
120 CALL P» ( 2,X9(),F2,G<> ) 
130 IF N2=0 THEN 18« 
140 IF N3+N4=0 THEN 1S0 
150 FOR J=l TO N3+N4 
160 G1(.J,I) = (G(A1(.J) )-A2(J) )/N 
170 NEXT ..I 
130 D(I)=<F2-F)/N 
190 NEXT I 
200 GOTO 220 
210 SFLAG 9 @ SUBEXIT 
220   SLIBEND 
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Module:    DIRECT 

Called by: CCONT 

Function:  Solve the direction-finding subproblem in the 

method of feasible directions. 

Calculate constraint push-off factors (170-200). 

Initialize working arrays for currently feasible 

(2000-2080), or infeasible (1000-1090) designs. 

Determine the direction vector SO, and the para- 

meter B0 (300-700). 

Nomenclature: 

A(,) Working array constructed from G1(,) and TO 

B(,) Working array initialized as -A~A 

B0 Kuhn-Tucker parameter 

B2 Intermediate element value used in pivoting 

B3 Intermediate element value used in pivoting 

B9 Intermediate variable used in pivoting 

CO Working vector 

D0O Working vector initialized as DO 

G0(,) Working array initialized as G1(,) 

G9() Working vector used in constructing G0(,) 

I9() Working vector of element indices 

J9 Working integer sealer 

K9 Working integer sealer 

N9 Dimension of active/violated constraint set 
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P() Working vector 

TO Vector of constraint push-off factors 

U() Working vector $l 

Y() Solution vector, contains S() and BO 

f 

•I 
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10 SUB "DIRECT" <D< ),GH, ),A1(),A2O,S<),B0) 
2» OPTION BASE 1 
30 COM P*C63 ,INTEGER Nl, N2, N3, N4, Ql, Q2, Q3, Q4, Cl ( 10) , SHORT 
C2<20) 
40 SHORT B2,B3,B9,A<13,11),T<12),B<13,13>,P<11),U<13),C<13). 
YQ1>,D0<10),G0<12, 10), 09 (10) 
50 INTEGER J9,K9,19<13),N9 
60 ON KEY# 1 GOTO 650 
70 IF FLAG(9) THEN SUBEXIT 
80 N9-N3+N4 
90 REDIM T(N9),P(N1+1),Y(N1+1) 
100 FOR 1=1 TO N9 
110 T(I)=C2(5)*(1-A2(I)/C2(4))A2 
120 IF T(I)>C2<6> THEN T(I)=C2(6> 
130 NEXT I 
140 MAT P=ZER(N1+1)@ MAT D0=D 
150 MAT D0=(1/MAXAB(D0))*D0 
160 MAT G0=G1 
170 FOR 1=1 TO N9 
130 MAT G9=G0(I,) 
190 MAT G9=<1/MAXAB(G9))*G9 
200 MAT G0<I,)=G9 
210 NEXT I 
220 IF N3>0 THEN GOSUB 1000 ELSE GOSUB 2000 
230 MAT B=A*TRN(A) 
240 MAT B=-B 
250 N=UBND(B,1) 
260 MAT I9=ZER(N) 
270 A9,K9=0 
230 FOR 1=1 TO N 
290 IF C(I)>=0 THEN 330 
300 B9=C(I)/B(I,I) 
310 IF B9<=A9 THEN 330 
320 K9=I S A9=B9 
330 NEXT I 
340 IF K9=0 THEN 540 
350 J9=I9<K9) 
360 I9(K9)=0 
370 IF J9=0 THEN I9(K9)=K9 
380 B2=B(K9,K9) 
390 FOR 1=1 TO N 
400 B(K9,I)=B(K9, D/B2 
410 NEXT I 
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1 
420 C(K9)=A9 
430 B(K9,K9)=1/B2 
440 FOR 1=1 TO N 
450 IF I=K9 THEN 520 
460 B3=B<I,K9> 
470 B(I,K9>=0 
430 FOR J=l TO N 
490 B(I,J)=B(I,J)-B3*B(K9,J> 
500 NEXT J 
510 C<I)=C<I)-B3*A9 
520 NEXT I 
530 GOTO 270 
540 FOR 1=1 TO N 
550 U(I)=0 
560 J9=I9(I) 
570 IF J9<=0 THEN 590 
530 U(I)=C(J9) 
590 NEXT I 
600 MAT Y=TRN(A)*U 
610 MAT Y=P-Y 
620 MAT S=Y(1:N1) 
630 B0=Y(N1+1) 
640 GOTO 660 
650 SFLAG 9 S SUBEXIT 
660 SUBENO 
1000 MAT C=ZER<N9)@ MAT U=ZER(N9) 
1010 MAT A=C0N(N9,N1+1) 
1020 MAT A(,1:N1)=G0 
1030 MAT A(,N1+1)=T 
1040 MAT P(1:N1)=D0 
1050 MAT P=-P 
1060 P(N1+1)=C2<7) 
1070 MAT C=A*P 
1080 MAT C=-C 
1090 RETURN 
2000 MAT C=ZER(N9+1)2 MAT U=ZER(N9+1) 
2010 MAT A=C0N(N9+1,N1+1) 
2020 MAT A<1:N9,1:N1)=G0 
2030 MAT A(1:N9,N1+1)=T 
2040 MAT A(N9+1,1:N1)=D0 
2050 P(N1+1)=1 
2060 MAT C=A(,N1+1) 
2070 MAT C=-C 
2060 RETURN 
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•V Module:    FDSRCH 

* Called by: CCONT 

£ Calls:    PROB (edited) 
.-• 

Function:  Perform one-dimensional search for constrained 
(: 
£• optimization in the method of feasible 

directions. 

Estimate initial search move parameter (1000- 

1180). 

St Check for side constraint violations (2000-2050). 

Establish bounds on solution, feasible (3000- 

33^0) or infeasible (4000-4360). 

Refine solution by polynomial approximation, 

feasible (5000-5240) or infeasible (6000-6580). 

Nomenclature: 

A Move parameter 

A0() Working vector of move parameters 

A() Working vector of move parameters 

A1 Initial A based on change in objective function 

A2 Initial A based on attaining feasibility 

B(,) Array of constraint values during search 

DO Dot product of D() and SO or G1(i,) and SO 

GOO Working vector of constraint gradients 

M() Working vector of maximum constraint values 

Y() Working vector of objective function values 
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10 SUE "FDSRCH" (X()tL(),U(),F,D<),G(),Al(),A2(),GlC, ) , S•() , A 
) 
20 OPTION BASE 1 
30 COM P*C 61   ,1NTEGER N1,N2,N3,N4,Q1,Q2,Q3,Q4,C1(10) ,SHORT 
C2<20> 
40 SHORT X9<10),Rl,R2,Al,A2,A< 4),Y < 4 >,M< 4 >,B(4,50),D0,00<10) 
»P0,P11P2,B0,A0(5D 
50 INTEGER I,K 
60 ON KEY* 1 GOTO 210 
70 IF FLAG<9> THEN SUBEXIT 
30 REDIM X9(N1),B(4,N2),G0(N1),A0(N2+1) 
90 R1=<3-SQR<5))/2 a R2=2-R1 
100 A,A1,A2,A3,A(1)=0 @ CFLAG 4 
110 MAT M=2ER<4)@ MAT X9=X@ Y(1)=F £ MAT B(1,)=G@ M(1)=AMAX< 
G) 
120 GOSUB 1000 
130 A(2)=A a GOSUB 2000 
140 IF N3=0 THEN GOSUB 3000 ELSE GOSUB 4000 
150 IF N3=0 THEN GOSUB 5000 ELSE GOSUB 6000 
160 A=A(K) 
170 IF A>C2(12) THEN 190 
130 SFLAG 4 @ SUBEXIT 
190 F=Y(K) @ MAT G=B(K,) 
200 GOTO 220 
210 SFLAG 9 a SUBEXIT 
220 SUBEND 
1000 GOSUB 1050 
1010 IF N3#0 THEN 1030 
1020 A=A1 3 RETURN 
1030 IF A2>2*A1 THEN A=2*A1 ELSE A=MAX(A1,A2) 
1040 RETURN 
1050 B0=DOT(D,S) 
1060 A1=C2(3)*ABS(F)/ABS(D0) 
1070 FOR 1=1 TO Nl 
1030 A=C2<9)*ABS<X(I) )/ABS(S(D) 
1090 IF A<A1 THEN A1=A 
1100 NEXT I 
1110 IF N3=0 THEN RETURN 
1120 FOR 1=1 TO N3 
1130 MAT G0=G1(I, ) 
1140 D0=DOT(G0,S) 
1150 A=-(A2(I)/D0) 
1160 IF A>A2 THEN A2=A 
1170 NEXT I jj 
1180 RETURN > 
2000 MAT X=<1)*X9+<A>*3 > 
2010 FOR 1=1 TO Nl I 
2020 IF XdXL(I) THEN X(I)=L(I) 
2030 IF X(I)>U(I) THEN X(I)=U(I) ^ 
2040 NEXT I | 
2050 RETURN I 
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3000 M<1)=AMAX(G> 

1 

3010 CALL  P*   (   2,X(),F,G()    ) 
3020 M<2)=AMAX<G) . 
3030 Y(2)=F 
3040 MAT   B<2,>=G 
3050 IF   Y(2)>Y(1)   THEN   3070 
3060 IF  M(2X=C2(12)   THEN  3150 
3070 A(3)=A(1)+R1*(A(2)-A<1)) 

i 

3080 A=A < 3) 
3090 GOSUB  2000 
3100 CALL   P*   (   2,X< >,F,G<)    ) » 
3110 M<3)=AMAX(G> ' 
3120 Y(3)=F 
3130 MAT   B<3,)=G « 

3140 RETURN • 

3150 
3160 
3170 
3180 
3190 
3200 
3210 
3220 
3230 
3240 
3250 
3260 
3270 
3280 
3290 
3300 
3310 
3320 
3330 
3340 

A(3)=A(2) 
Y(3)=Y(2) 
M<3)=M<2) 
MAT G=B<2, ) 
MAT B<3,)=G 
A(2)=(1+R2)*A(3)-R2*A(1) 
A=A(2) 
GOSUB 2000 
CALL P* ( 2,X(),F,G<) ) 
Y(2)=F 
M(2)=AMAX(0) 
MAT B(2,)=G 
IF Y(2)>Y(3) THEN RETURN 
IF M<2)>C2(12) THEN RETURN 
A<1)=A(3) 
Y(1)=Y(3) 
M(1)=M(3) 
MAT G>B(3,) 
MAT B <1, > =G 
GOTO 3150 
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4000 M(1)=AMAX<G) 
4010 CALL P* ( 2,X<),F, GO ) 
4020 Y<2)=F 
4030 M<2)=AMAX(G> 
4040 MAT B<2,)=G 
4050 IF M(2)>M<1> THEN 4030 
4060 IF M<2)>0 THEN 4160 
4070 IF Y(2XY(1) THEN 4160 
4080 A(3)=A(1)+R1*<A(2 -A<1)) 
4090 A=A<3) 
4100 GOSUB 2000 
4110 CALL P%   ( 2,X( ),F G( ) ) 
4120 Y < 3)=F 
4130 M<3)=AMAX(G> 
4140 MAT B<3,)=G 
4150 RETURN 
4160 A(3)=A(2) 
4170 Y(3)=Y<2> 
41S0 MAT G=B(2, ) 
4190 MAT B(3,)=G 
4200 M(3)=M(2) 
4210 A(2)=<1+R2)*A<3)-R2*A(1) 
4220 A=A<2) 
4230 GOSUB 200O 
4240 CALL P* ( 2,X(),F G( ) ) 
4250 Y(2)=F 
4260 M(2)=AMAX<G) 
4270 MAT B<2,>=G 
4230 IF M<2)>M<3) THEN RETURN 
4290 IF M<2)>0 THEN 43 10 
4300 IF Y<2)>Y(3) THEN RETURN 
4310 A(1)=A(3) 
4320 Y(1)=Y(3) 
4330 M(1)=M(3) 
4340 MAT G=B<3,) 
4350 MAT B <1, > =G 
4360 GOTO 4160 
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8D 

rl 

5000  P2= <(Y(3)-Y(1))/(A(3)-A(1))-(Y(2)-Y(1))/(A(2)-A i1> ) > /(A 
(3)-A < 2)) 
5010  P1=<Y(2)-Y(1))/(A(2)-A(l))-P2»<A(1)+A(2)) 
5020  A0(1)=-(P1/(2*P2)) H 
5030 FOR   1=1   TO  N2 
5040  P2=((B<3,I)-B<1,I))/(A<3)-A(1)>-<B<2,I)-B(1,I))/<A(2)-A 
<1)))/(A(3)-A(2)) 
5050  P1=(B<2, I)-B<1, I) )/<A(2>-AU >)-P2*(A(1)+A(2) ) 
5060  P0=B< 1, I >-P1*A(1)-P2*A(1) -2 
5070  B0=P1~2~4*P0»P2 > 
5030   IF   B0>0   THEN   5110 
5090  A0(I+1)=-(P0/P1) 
5100 OOTO 5130 
5110 A0(I+1)=MAX(-P1+SÜR(B0),-P1-SQR(B0)) 
5120 A0(I+1)=A0(I+1)/(2*P2) 
5130 NEXT I 
5140 A(4)=AMIN(A0) 
5150 A=A<4) 
5160 OOSUB 2000 
5170 CALL Pf ( 2,X(),F,G<) ) 
5180 Y(4)=F @ MAT B<4,)=G 
5190 M<4)=AMAX(G) 
5200 K=l 
5210 FOR 1=2 TO 4 
5220 IF Y(IXY(K) AND M(IX=C2(12) THEN K=I 
5230 NEXT I 
5240 RETURN 

I 
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6000 MAT A0=ZER(N3+1) 
6005 IF AMIN(M)>0 THEN 6360 
6010 P2=< < Y(3 >-Y <1))/< A(3)-A <1))-(Y(2)-Y <1))/< A < 2 >-A C1} ) )/ 
(3)-A(2>> 
6020 P1=<Y(2)-Y<1))/<A(2>-A<1))-P2*<A<1)+A(2)) 
6030 A0(1)=-(P1/(2*P2)) 
6040 FOR 1=1 TO N3 
6050 GOSUB 6490 
6060 IF E0>0 THEN 6090 
6070 A0(I+1)=-(P0/P1) 
6080 GOTO 6110 
6090 A0 < I +1 ) =M IN ( -P1+SQR (B0),-P1 -SQR < B0) ) 
6100 A0(1+1)=A0(1+1)/(2*P2) 
6110 NEXT I 
6120 A<4)=AMAX(A0) 
6130 MAT A0=ZER<N2-N3)@ Jl=l 
6140 FOR 1=1 TO N2 
6150 FOR J=l TO N3 
6160 IF I=A1(J) THEN 6240 
6170 NEXT J 
6130 GOSUB 6540 
6190 IF B0>0 THEN 6220 
6200 A0(.J1)=-(P0/P1 ) 
6210 J1=J1+1 @ GOTO 6240 
6220 A0 < J1)=MIN(-P1+SQR < B«),-P1-SQR(B0)) 
6230 A0 ( J1 ) =A0 (.J 1 ) / < 2*P2 ) 
6235 J1=J1+1 
6240 NEXT I 
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6250   A<4)=MIN(A<4),AMIN<A0) ) 
6260   A=A<4) 
6270 GOSUE 2000 
6230 CALL P* ( 2,X(),F,Q() ) 
6290 Y<4)=F S MAT B<4,)=G 
6300 M<4)=AMAX(G) 
6310 K*»l 
6320 FOR 1=2 TO 4 
6330 IF Y(IXY(K) AND M<IX=C2(4) THEN K=I 
6340 NEXT I 
6350 RETURN 
6360 P2=< <M(3)-M(1))/<A<3)-A<1))-(M<2)-M<1))/(A<2)-A(l)))/(A 
(3)-A(2)) 
6370 P1=<M<2)-M<1))/(A(2)-AUi>-P2*(A(1>+A(2> ) 
6380 A(4)=-(P1/<2*P2)) 
6390 IF A(3XA(4) AND A(4XA(2) THEN 6420 
6400 M<4)=2*M<2) 
6410 GOTO 6460 
6420 A=A(4) 
6430 GOSUB 2000 
6440 CALL P* ( 2,X(),F,G<) ) 
6450 M<4)=AMAX<G) S Y(4)=F @ MAT B<4,)=G 
6460 M=AMIN<M) 
6470 K=AMINROW 
6480 RETURN 
6490 P2=((B<3,A1(I))-B(l,AKI)))/<T<3)-A<1))-<B<2,Al(I))-E ( 1 
, Al (I) ) ) / (A (2) -A < 1) ) ) / (A (3) -A (2) ) 
6500 P1=<B(2,A1(I))-B<l,Al(I)))/(A(2)-A(1))-P2*(A<1)+A(2)) 
6510 P0=B(1,A1<I))-Pl*A(l)-P2*A(l)-2 
6520 B0=P1'N2-4*P0*P2 
6530 RETURN 
6540 P2=<(B(3,X)-B<1,I)>/<A(3)-A(l))-(B(2,I)-B(l,I))/<A(2)-A 
(1)))/(A(3)-A<2)) 
6550 P1«*(B(2, I)-B(l, I) )/(A<2)-A<l))-P2*<A(1)+A<2)) 
6560 P0=B<1,I)-P1*A <1>-P2*A <1)"2 
6570 B0=P1-N2-4*P0*P2 
6580 RETURN 
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Module:    VMSRCH 

Called by: UCONT 

Calls:    PROB (edited) 

Function:  Perform unconstrained one-dimensional search in 

'{->; variable metric method. 

Establish bounds on the solution (100-350). 

Refine the solution by polynomial approximation 

(360-520). 

Nomenclature: 

A0 Move parameter 

A() Working vector of move parameters 

A1() Working vector of move parameters 

DO Dot product of D() and S() 

F9 Working value of objective function 

Y() Working vector of objective function values 

Y1() Working vector of objective function values 

83 

^-•--^'-'•'-\*'**>^:-AS.<;*-vl%\-:^ 



fid 

r i'•»• " 

10 SUB "VMSRCH" <X(),F,D(),S<>,A$) 
20 OPTION EASE 1 
30 COM P* C 6 3 ,1NTEOER N1,N2,N3,N4,Q1,Q2,Q3,Q4,C1<19)    ,SHORT 
C2(20) 
40 SHORT D0,A1(11),X9(10),Y(4),A(4),R1,R2,P1,92,P3,Y1<4 >,F?, 
B 
50 ON KEY# 1 GOTO 540 
60 IF FLAG(9) THEN SUEEXIT 
70 R1=(3-SGR<5))/2 S R2=(1+SQR<5))/2 
80 MAT A=ZER<4)@ MAT Y=A 
90 Y<1)=F @ F9=0 
100 D0=DOT(D,S) 
110 MAT A1=ZER(N1+1) 
120 MAT X9=X 
130 Al(l)=02(3)»ABS(F)/ABS(D0) 
140 FOR 1=1 TO Nl 
150 A1(I+1)=C2(9)*ABS(X9(I))/AES(S(I)) 
160 NEXT I 
170 A<2)=AMIN(A1) 
180 MAT X9=(1)*X9+(A(2))*S 
190 CALL P* ( 2,X9<),F9 ) 
200 Y(2)=F9 
210 IF Y(2)>Y<1) THEN 310 
220 A(3)=A(2) @ Y(3)=Y(2) 
230 A<2)=<1+R2)*A<3)-R2*A<1> 
240 MAT X9=X 
250 MAT X9= <1)*X9+ < A(2))*S 
260 CALL Pt- ( 2,X9(),F9 ) 
270 Y<2)=F9 
280 IF Y(2)>Y(3) THEN 360 
290 A(1)=A(3) @ Y(1)=Y(3) 
300 GOTO 220 
310 A<3)=R1*A<2) 
320 MAT X9=X 
330 MAT X9=<1)*X9+<A<3)>*S 
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340 CALL P* < 2,X9<),F9 ) 
350 Y(3)=F9 
360 P3=(Y(3)-Y<1) )*( A<2>-A< 1 ) )/ i A(3)-A< 1 )-<Y( 2)-Y ( 1 ) )*< A(3) - 
A(l) ) ) 
370 P3=P3/<A(2)-A<1>+<A(3)-A<2)>*B0>/< <A<2)-A(1)>*<A<3>-A<1> 
>*<A<3)-A<2>)) 
330 P2=((Y(2)-Y<1))/(A(2)-A<l)>-D0)/(A(2)-A<1))-P3*(2*A(1)+A 
(2)) 
390 P1 =D0-2*P2»A (1) -3*P3*A (1 ) '-2 
400 B=P2'S2-3*P1*P3 
410 IF B>=0 THEN 430 
420 J=3 3 GOTO 490 
430 A(4) = <-P2+SGR(B))/(3*P3) 
440 MAT X9=X 
450 MAT X9=(1)*X9+(A(4>)*S 
460 CALL Pi ( 2,X9(),F9 ) 
470 Y(4)=F9 
480 J=4 
490 MAT Y1=Y<1:J) 
500 F=AMIN(Y1) 
510 K=AMINROW 
520 A0=A(K) 
530 GOTO 550 
540 SFLAG 9 @ SUBEXIT 
550  SUBEND 
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1 
Module:    NEWH 

1 
'.V 

Called by: UCONT 

Function:  Update the approximation to the inverse of the 

Hessian matrix used in determining the search 

1 v.*. 
direction in the variable metric method. 

i Nomenclature: 

D0(,)    Update matrix 

P()     Working vector initialized as X()-X1() i S       Dot product of P() and Y() 

T()     Working vector 

T1()    Working vector 

W i T2(,)   Working array 

T3(,)   Working array 

i 
Y()     Working vector initialized as D()-D1() 
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10   SUE   "NEWH"    <XO,Xl< ),DO,Dl< ),H(,)) 
20 OPTION BASE 1 
30 COM P*C63 ,1NTEGER N1,N2,N3,N4,Q1,02,Q3,Q4,C1(10) ,SHORT 
C2(20) 
40 SHORT D0(10, 10),Y<10),P(10),T1(10),T2(10,10),T(1),S,T3(10 
,10) 

'> 50 ON KEY* 1 GOTO 230 
«\ 60 IF FLAG<9) THEN SUEEXIT 
si  .        70 REDIM D0(N1,Nl),Y<Nl),P(N1),Tl(Nl),T2(Nl,Nl),T3(Nl,Nl) 
I? 80 MAT P=X-X1 
& 90 MAT Y=D-D1 
/. 100 S=DOT<P,Y> 
•y 110 MAT T1=H*Y 
'/ 120 MAT T2=T1*TRN<T1) 
• 130 MAT T=TRN(Y)*T1 
^ 140 MAT D0=P*TRN(P) 
•'•• 150 MAT D0= ( < S+T (1) *C 1 (3) ) /S 2) *D0 
:< 160 MAT D0=(l)*D0+((Cl(3)-1)/T(l))*T2 
I"; 170 MAT T2=T1*TRN(P) 
>."• 1S0 MAT T3=P*TRN(T1) 
a) 190 MAT T2=T2+T3 
• 200 MAT D0=(l)*D0+(-(CK3)/S) )*T2 
W 210 MAT H=H+D0 
M 220 GOTO 240 
M 230 SFLAG 9 @ SUEEXIT 
%- 240 SUEEND 

&7 
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Module:    CONV 

Called by: CCONT, UCONT 

Function:  Determine whether the design has converged to the 

optimum in the last iteration. 

Update convergence criteria based on iteration 

history. 
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10 SUB "CONV" (X(>,X1(),F,F1) 
20 OPTION BASE 1 
30 COM P* C 6 3 ,1NTEGER N1,N2,N3,N4,G1,02,Q3,Q4,C1(10) ,SHORT 
02(20) 
40 SHORT X9<10) 
50 IF FLAG*9) THEN SUBEXIT 
60 CFLAG 6 
70 C2(8)=<C2(8)+ABS<(Fl-F)/Fl))/2 
80 MAT X9=X1-X@ MAT X9=X9/X1 
90 C2(9)=(C2(9)+MAXAB<X9))/2 
100 IF ABS(F1-FXMIN(C2(13),C2(11)*ABS(F1)) THEN Q3=Q3+1 ELS 
E Q3=0 
110 IF ABS(Fl-F)/MAX(ABS<F1),.00001X02(10) THEN Q4=Q4+1 ELS 
E Q4=0 
120 IF MAX(Q3,Q4)>=01(2) THEN SFLAG 5 
130 IF MAX(Q3,Q4)>0 THEN SFLAG 6 
140   SUBEND 

89 
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Module: PROG 

Called  by:   CCONT,   UCONT 

Function:     Generate   optimization   progress   information 

output. 

90 
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10 SUB "PROG" <X0<),X<),Y,F) 
20 OPTION EASE 1 
30 COM PtC6] ,INTEGER Nl,N2,N3,N4,Ql,Q2,Q3,Q4,Cl(10) »SHORT 
C2(20) 
40 ON KEY* 1,"INTRPT" GOTO 300 
50 IF FLAG<9) THEN SUBEXIT 
60 IF FLAG(ll) THEN 230 
70 IF Q1>1 THEN 130 
30 GCLEAR @ PEN 1 @ LORG 5 
90 SCALE -2,21,-3.2,3.2 
100 XAXIS 0,1,0,20 
110 YAXIS 0,1,-3,3 
120 FOR I=-3 TO 3 
130 MOVE -.5,1 S LABEL I 
140 NEXT I 
150 MOVE 10,3 @ LABEL "Iteration History" 
160 MOVE 10,2.7 8 LABEL P* 
170 MOVE -3.1,5 @ LABEL "Kl to interrupt" 
130 FOR 1=1 TO Nl 
190 MOVE Q1,X(I)/X0(I) 8 LABEL I 
200 NEXT I 
210 MOVE Q1,Y a LABEL "f" 
220 SUBEXIT 
230 IF 01>1 THEN 270 
240 CLEAR a DISP USING "13X,6A" ; F% 
250 DISP "Iteration    Objective Function" 
260 KEY LABEL 
270 DISP USING 280 ; Q1,F 
230 IMAGE 3X,2D,13X,K 
290 GOTO 310 
300 SFLAG 9 a SUBEXIT 
310 SUBEND 
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Module:   TERM 

Called by: CCONT, UCONT 

Function:  Generate output of optimization results. 
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10 SUB "TERM" <X(),F,G(>) 
20 OPTION BASE 1 
30 COM P*C6] »INTEGER Nl,N2,N3,N4,Ql,02,03,04,Cl(10) ,SHORT 
C2(20) 
40 IF FLAG<9> THEN SUBEXIT 
50 GOSUB 1000 
60 IF FLAG(l) THEN GOSUB 2000 
70 IF FLAG(2) THEN GOSUB 3000 
80 IF FLAG<3) THEN GOSUB 4000 
90 IF FLAG(4) THEN GOSUB 5000 
100 IF FLAG<5) THEN GOSUB 6000 
110 IF FLAG(ll) THEN 150 
120 PRINT @ PRINT @ PRINT 
130 GRAPH @ COPY <2 SUBEXIT 
140 PRINT @ PRINT @ COPY 
150 SUBEND 
1000 PRINT @ PRINT 
1010 FRINT USING "13X,6A" ; Pt 
1020 PRINT USING 1030 ; F 
1030 IMAGE 1/,8X,"OPTIMUM = ",K 
1040 FOR 1=1 TO Nl 
1050 PRINT USING 1060 ; I,X(I) 
1060 IMAGE 1/,10X,"X(",K,") = ",K 
1070 NEXT I 
10S0 IF N2=0 THEN 1130 
1090 FOR 1=1 TO N2 
1100 PRINT USING 1110 ; X,G(Z) 
1110 IMAGE 1/,10X,"G<",K,") = ",K 
1120 NEXT I 
1130 PRINT ® PRINT @ PRINT "Termination based on:" @ PRINT 
1140 SFLAG 10 
1150 RETURN 
2000 PRINT "Exceeded max. no. of iterations." 2 RETURN 
3000 PRINT "Excessive number of violated    constraints." @ 
RETURN 
4000 PRINT "Failure to find a direction to  improve the desi 
gn. " a RETURN 
5000 PRINT "Failure to find a move parameter to improve the 
design." @ RETURN 
6000 PRINT "Convergence" @ RETURN 

r 

a 
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Listings of the edited versions of PROB which were used 

for the test cases presented in Chapter IV are included as 

examples of MDOT problem input. The subprogram used to enter 

the unconstrained test problem was renamed "BANANA", while 

that edited for the constrained problem was renamed "BEAM". 
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10 SUB "BANANA" (t,i,X< ) 
20 OPTION BASE 1 
30 COM P*C63 ,INTEGER N 
C2(20) 
35 SHORT X1,X2,X3,X4,X5 
40 DIN L*C6],U*C63 
50 IF K1>1 THEN 220 
90 READ N1,N2 

, F, Q < ) , L ( ) , U ( ) ) 

1,N2,N3,N4,Q1,Q2,Q3,Q4,C1<10) 

,X6,X7,X8,X9,X0 

SHORT 

100 
105 
130 
140 
142 
144 
150 
160 
170 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
220 
230 
399 
400 
499 
500 
9000 
9010 
9020 
9030 
9040 
9050 
9060 
9070 
9080 
9090 
9100 

DATA 2,0 
IF K1=0 THEN SUBEXI 
FOR 1=1 TO Nl 
READ X<I) 
IF N2=0 THEN 170 
READ L*,U* 
IF L*-="N" THEN L(I) 
IF U*="N" THEN U(I) 
NEXT I 
DATA -1 
DATA 1.5 
DATA 
DATA 
DATA • 
DATA 
DATA 
DATA 
DATA 
DATA 
GOSUB 9010 
! User-defined expr 
! Objective functio 
F=l0*X1~4-20*X1-2*X 
Q2=Q2+1 
! CONSTRAINTS 
SUBEND 

t 

=-l.E99 ELSE L(I)=VAL(LI) 
=1.E99 ELSE U(I)=VAL(U*> 

essions 
n 
2+10* X 2"-2+X1 ~2-2*X 1 +5 

•: 

X1=X(1) 
X2=X(2) 
X3=X(3) 
X4=X(4) 
X5=X(5) 
X6=X(6) 
X7=X(7) 
X3=X<8) 
X9=X(9) 
X0=X(10) 

IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 

Nl = l 
Nl=2 
Nl=3 
Nl=4 
Nl=5 
Nl=6 
Nl=7 
Nl=3 
Nl=9 

THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 

RETURN 
RETURN 
RETURN 
RETURN 
RETURN 
RETURN 
RETURN 
RETURN 
RETURN 

<2 RETURN 
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10 SUB "BEAM" <K1,X<),F,G<),L<),U<)) 
2« OPTION BASE 1 
30 COM P*C6] »INTEGER Nl,N2,N3,N4,Ql,Q2,Q3,04,Cl<10) ,3H0RT 
C2<20) 
33 SHORT X1,X2,X3,X4,X5,X6,X7,X3,X9,X0 
40 DIM L*C63,U*C6] 
50 IF K1>1 THEN 220 
90 READ N1,N2 
100 DATA 2,3 

IF K1»0 THEN SUBEXIT 
REDIM L<N1),U(N1),X(N1),G<N2) 
FOR 1=1 TO Nl 
READ X(I) 
IF N2=0 THEN 170 
READ L*,U* 
IF L*="N" THEN L<I)=-1.E99 ELSE L(I)=VAL<L*> 

THEN U(I)=1.E99 ELSE U<I)=VAL(U*> 

105 
110 
130 
140 
142 
144 
150 
160 
170 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
220 
230 
301 
302 
399 
400 
499 
500 
501 
502 
503 
9000 
9010 
9020 
9030 
9040 
9050 
9060 
9070 
9080 
9090 
9100 

IF U*="N" 
NEXT I 
DATA 3.5,.5,5 
DATA 16,1,20 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
GOSUB 9010 
! User-defined 
B=X1 
H=X2 
! Objective function 
F=200»B*H 
Q2sQ2+l 
! CONSTRAINTS 
G(1)=600/(B*HA2)-1 
G<2)=10666.7/<B*H~3>-1 
G(3)=H/10-B 
SUBEND 

expressions 

X1=X(1) 
X2»X(2) 
X3=X(3) 
X4=X(4) 
X5=X(5) 
X6*X<6) 
X7»X(7) 
X8=X(8> 
X9=X<9) 
X0=X(10) 

IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 

Nl = l 
Nl=2 
Nl=3 
Nl=4 
Nl=5 
Nl»6 
Nl=7 
Nl=8 
Nl=9 

THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 

RETURN 
RETURN 
RETURN 
RETURN 
RETURN 
RETURN 
RETURN 
RETURN 
RETURN 

« RETURN 

96 

K; 
&^i&£s::&itä&i>^'^ >>i^>>iNi"^>^s>>&^>i <<;<m« .-:>-:>?:<'&£> 



I'M*'A'W W.U...1 .H^.g.^M.^V.'W'J.'-.'^l'i.i.iJ.il.i'JPJ.fjP.'P.11 Ji'.P.^ji'.i'.'ifi. Ji. P!.',.'. •'.'?;•• .».• .• T .•-.- ..J7V r.-i 

« 

:<-• 

A.« 

'.%' 

i 

»for. 

LIST OF REFERENCES 

1. Falk, H., "Software Tools for Mechanical Engineers", 
Mechanical Engineering, v. 105, no. 8, August 1983 

2. Seireg, A., "From the Room-Size Computer to the 
Portable in Thirty Five Years", Computers in Mechanical 
Engineering, v. 2, no. 1, July 1983 

3. Naval Postgraduate School Report NPS69-81-003, COPES - 
A Fortran Control Program for Engineering Synthesis, by 
I. Madsen and G. Vanderplaats, March 1982 

4. Beakley, G., and Chilton, E., Introduction to 
Engineering Design and Graphics, Macmillan,~T973 

5.  Vanderplaats, G., Numerical Optimization Techniques for 
Engi ' " ' - w Engineering Design: With Applications, McGraw-Hill, 

6. Converse, A., Optimization, Holt, Rinehart and Winston, 
1970 

7. Kuester, J., and Mize, J., Optimization Techniques with 
FORTRAN, McGraw-Hill, 1973 

8. Boot, J., Quadratic Programming, North-Holland, 1964 

9. Zecher, J., et al, "Developing a Desktop Computer- 
Based Three Dimensional Modeling System", Mechanical 
Engineering, v. 105, no. 11, November, 198T 

10.  Hock, W., and Schittkowski, K., Test Examples for 
Nonlinear Programming Codes, Springer-Verlag, 1981 

Jy' 11.  Adby, P., and Dempster, M., Introduction to 
£•" Optimization Methods, John Wiley and Sons, 197*» 

97 

WAV. c^^^tt/..; ••••.•.;<£. te^z-Miittfo 



r&*1 *  - ' - ' .'-.-.'.-.•.•.•-..".. ».T%T«. . •- •%..". .". A .-. .'• .*• C' . - .*• . » j • L • . o -_> -.- V V .* 't\'_ .-. V.V. .". *« -", 

fc\V 

i 

y 
v 

BIBLIOGRAPHY 

Albrecht, R., and Finkel, L., and Brown, J., BASIC, 
John Wiley and Sons, 1978 

Bazaraa, M., and Shetty, C, Nonliear Programming, 
John Wiley and Sons, 1979 

Conley, W., Computer Optimization Techniques, 
Petrocelli, "1980 

Fletcher, R., and Harwell, A., Optimization, Academic 
Press, 1969 

Fox, R., Optimization Methods for Engineering Design, 
Addison-Wesley, 1971 

Geoffrion, A., Perspectives on Optimization, Addison- 
Wesley, 1972 

Gerald, C, Applied Numerical Analysis, 2nd ed., 
Addison-Wesley, 1980 

Hestenes, M., Conjugate Direction Methods in Optior 
ization, Springer-Verlag, 1980 

Hornbeck, R., Numerical Methods, Quantum, 1975 

Johnson, R., Optimum Design of Mechanical Elements, optimum 
a Sons, John Wiley and Sons, 1961 

Ketter, R., and Prawel, S., Modern Methods of Engine- 
ering Computation, McGraw-Hill, 1969 

Kunzi, H., et al, Numerical Methods of Mathematical 
Optimization, Academic Press, 1971 

Talbot, A., Approximation Theory, Academic Press, 1970 

98 

S-Iviirjyl-Q••»':/*>y: •! v.yo-?:r%'-v ^;-\^<^:^.S<^.-AOW^V.S^^\VAV.--.^.VA\V-S\S^^S\\\V.VA\V.VAW.^-J 



^mm^^^^mm^^^mmm^mM?^ 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Cameron Station 
Alexandria, Virginia 22314 

2. Library, Code 0142 
Naval Postgraduate School 
Monterey, California 93943 

3'  Department of Mechanical Engineering, Code 69 
Naval Postgraduate School 
Monterey, California 93943 

4. G. N. Vanderplaats 
Department of Mechanical Engineering, Code 69 
Naval Postgraduate School 
Monterey, California 93943 

5. Y. S. Shin 
Department of Mechanical Engineering, Code 69 
Naval Postgraduate School 
Monterey, California 93943 

6. Prof. Lucien A. Schmit Jr. 
Department of Mechanics and Structures 
6731 Boelter Hall 
UCLA 
Los Angeles, California 90024 

7. Dr. Steven Tsai 
3033 Locust Camp Road 
Dayton, Ohio 45419 

8. Dr. Hirokazu Miura 
M.S. 237-11 
NASA Ames Research Center 
Moffett Field, California 94035 

9. Dr. Jarek Sobieski 
M.S. 243 
NASA Langley Research Center 
Hampton, Virginia  23665 

No. Copies 

2 

99 



*W*W«WW!^T*T*T?!T!!WT *». ^ • - • « •• .-."-^..••v->vv:-.->. 

10.  LT Richard L. Booth, USN 
105 Colleen Way 
Soquel, California 95073 

X" 

3 

11.  Dr. Alan 0. Lebeck 
Department of Mechanical Engineering 
University of New Mexico 
Albuquerque, New Mexico 87131 

•§ 

fcl 

100 

L 
ü»%*AVsV.*.-.\V.S V»iv.-W.J^J."»> V-V-V/AT -VV^Vf^-^<*f^C«/^%A3»flJV-JWV»vvj»ivaiwkÄii 



H*"^J •'- *".' ^T •*".' V- *"*- ir~* *""•'*• 

m**-.. '«-—*r   .-«r-v^-   »>%.•    -W 

»j 

M 


